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Abstract

Federated Learning (FL) is being increasingly studied and became a common ap-
plication in many domains. Existing work about FL mostly focuses on a system
architecture with a single centralized actor (coordinator) deploying continuous
computation requests over multiple decentralized federated workers. However, due
to the limitation of a single coordinator within the federated infrastructure, only
one actor can address the data of the federated worker at the same time.

�e emerging �eld of FL created many application scenarios allowing to learn
centralized models from private data, and some systems even making it feasible
to perform certain ML pipelines. However, these applications miss the bene�ts of
multiple coordinators within the same federated infrastructure.

In this work, we introduce Multi-tenant Federated Learning (MuTeFL), which
provides the possibility to share data and computing resources of multiple federated
workers among several distinct coordinators. To preserve the independence of the
coordinators, we create an autonomous, server-like federated worker that can
serve multiple coordinators simultaneously. Moreover, we isolate the coordinator-
instances at the federated worker to avoid revealing data to other coordinators, we
introduce parallelization strategies to utilize the full potential of the worker, and
we eliminate redundancies at the worker by using reuse techniques.

We thereby create the possibility to deploy the federated worker as a long-running
server process that can be addressed by di�erent parties at any time. �is enables,
for example, simultaneous model training by di�erent data scientists on the same
federated workers, as well as providing learning capabilities on sensitive data to
the public domain.
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1 Introduction

�e potential of machine learning (ML) applications is expanding rapidly as data
collection capabilities increase. Since collecting user data becomes steadily easier
due to new technological developments, an increasing amount of data is being used
to train machine learning models to make future decisions about user behavior.
In today’s world, nearly everyone carries a smartphone with them that is capable
of gathering various pieces of information through built-in sensors (e.g., location,
movement) as well as through the use of the device (e.g., keyboard inputs, calls).
Since most of this data contains sensitive information that users do not want to
disclose, the challenges of protecting data privacy and preserving data ownership
arise. Additionally, a major bo�leneck in geo-distributed applications is created by
the transmission of entire datasets over the network. Sometimes it is even infeasible
to consolidate the data in a centralized way due to bandwidth limitations (e.g.,
collecting detailed data from data centers around the world) [55].

Federated Learning (FL) is a sub-�eld of ML which enables model training on decen-
tralized data utilizing the computing resources of the corresponding decentralized
nodes (federated workers), and addresses problems of privacy, ownership, and the
locality of data [12]. Privacy of federated data is achieved by only allowing certain
aggregates of the data to be sent to the centralized node (control program), in order
to prevent data reconstruction and to conceal sensitive statistics of the dataset.
Beyond data privacy preservation, training models at the federated workers usually
reduces the performance bo�leneck from sending large data �les over the network,
since the data is aggregated on-site and is transferred to the control program as
smaller-sized aggregates.
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1 Introduction

1.1 Motivation

During the last years, FL techniques experienced rapid growth in their applications,
which cover a broad spectrum of application domains and �elds like mobile devices,
industrial engineering, and health care [35]. As privacy preservation emerges as a
key advantage of federated learning, a great number of cross-device systems have
evolved towards FL strategies to protect sensitive data [15, 49]. However, also the
aspect of data locality led to great developments in the industry, as this allows
data scientists to analyze data without the overhead of central data consolidation.
Although the majority of today’s FL applications are dealing with company-internal
learning scenarios (i.e., within the company itself or the company’s product), also
inter-company use-cases have been developed to train models on sensitive data
from di�erent parties without revealing the actual data.

Existing work on Federated Learning focuses on a single-tenant-setup, where the
federated workers are designed to execute received commands from a single control
program processing a data science pipeline. �erefore, all parts of an FL network
are built ad-hoc for a single learning procedure.

Example 1. Consider a company with a large data science team. Every data scientist

analyzes data from various federated data sources on their individual business laptops.

Since multiple data scientists analyze the same data—or data at the same federated

site—some of the federated workers need to be shared among them.

In common scenarios as in Example 1, data scientists have to make explicit agree-
ments about separate usage times of the federated workers. Automated Federated
Learning systems, on the other hand, o�en implicitly alternate their usage, as for
example the Federated Learning in Gboard (the Google Keyboard), which engages
devices in model training only when they are idle [38].

Multi-Tenancy: We introduce Multi-tenant Federated Learning (MuTeFL) to over-
come these limitations of a single processing instance by allowing multiple control
programs to concurrently train models on the same federated data. �is results in
autonomously running federated workers and addresses the limitation of workers
being bound to one single coordinator. Applied to Example 1, there is no need for
an agreement about di�erent usage times anymore, as the data scientists can work
simultaneously on the same federated workers.
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1 Introduction

Computational Redundancy: �e typical data science process includes data pre-
processing and data analysis. O�en, applied pre-processing methods are highly
data-dependent. With multiple data scientists performing machine learning on
the same federated site, we identify the repetitive data pre-processing step as an
unnecessary redundancy. Furthermore, since data scientists o�en perform ML
pipelines iteratively making only small changes (for example in hyper-parameter
selection), multiple operations within the pipeline are independent of the changes
made, and hence are redundantly computed several times.

1.2 Contributions

In this thesis, we describe the overall architecture and key concepts for extending a
federated backend to support multi-tenant execution, and share insights on how we
support Multi-tenant Federated Learning (MuTeFL) in Apache SystemDS [10]. Ad-
ditionally, we show necessary changes for sustaining robustness and performance,
and demonstrate some optimizations to enhance the adapted system architecture.

With MuTeFL we create the possibility for a multi-tenant-setup of the FL infras-
tructure as shown in Figure 1.1. Complete isolation of the coordinator-speci�c
operations and intermediate results at the federated worker—in terms of the separa-
tion of their processing contexts—allows for multiple independent data scientists to
perform individual learning procedures concurrently on the same shared federated
data, and hence on the same federated workers. Furthermore, such a complete
isolation of the contexts opens the opportunity to run the federated workers as
stand-alone servers.

Subsequently, we concentrate on the e�cient utilization of the resources from the
federated worker. For that reason, we introduce parallelization strategies consider-
ing multi-tenant execution and the di�erence in computing resources of the nodes
in a federated infrastructure.

We then optimize the adapted system with a particular focus on emerging redun-
dancy between the di�erentiated processing contexts. �erefore, we apply reuse
strategies to intermediates from redundant operations, whereby we eliminate some
time-consuming computations.
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Figure 1.1: Multi-tenant Setup

Finally, we present results from an extensive evaluation to show the robustness and
e�ciency of the adapted system. Moreover, we show the impact of the techniques
introduced in this thesis by conducting an ablation study regarding individual
techniques. �ereby, we explore the advantages of each individual extension.

Our technical contributions are:

1. Tenant-Identi�cation: the identi�cation and distinction of the di�erent control
programs at the federated worker (Section 3.1)

2. Tenant-Isolation: the isolation of processing instances through a complete
separation of the processing contexts at the federated worker (Section 3.2)

3. Multi-threaded Processing: the multi-threaded execution of federated requests
and operations at the federated worker (Section 3.3)

4. Optimizations: caching and reuse of common intermediates within and across
tenant sessions (Section 3.4-3.8)

5. Experiments: experimentally evaluate the robustness and the capabilities of
the newly adapted system (Section 4)
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2 Background and Challenges

In this chapter, we provide an overview of the existing federated backend of Apache
SystemDS [10] (formerly Apache SystemML [11]), and characterize major chal-
lenges that show up when extending the system to support multi-tenant execution.
Additionally, we analyze the necessary changes in order to �nd possible optimiza-
tions of the adapted system.

2.1 SystemDS Federated Runtime

Apache SystemDS is a machine learning system that perfectly quali�es for extending
it to support Multi-tenant Federated Learning. Recent work within the ExDRa
project has introduced a federated runtime backend to SystemDS, which provides a
great number of federated primitives to allow the automatic compilation of machine
learning algorithms into federated runtime plans [9].

�e basic federated system con�guration of SystemDS is characterized by three
important components:

1. �e Main Control Program working with federated data objects (Section 2.1.2)
as the initiating and driving component of the federated learning process.

2. �e Federated Workers as decentralized computing nodes that own data and
process operations on these data (described in Section 2.1.1).

3. �e Network Communication as the interface between the main control pro-
gram and the federated workers.

As a general baseline throughout this section, we consider the usual setup of a
federated learning infrastructure, where the main control program serves as a
coordinator for the federated workers. In this scenario, the coordinator trains
models on decentralized private data that is located at the federated sites.

5



2 Background and Challenges

2.1.1 Federated Workers

From the coordinators’ point of view, a federated worker is a network node that
represents the coupling of decentralized data objects with a computing unit. As the
coordinator runs machine learning scripts on federated data objects, it compiles
runtime plans that contain federated operations and directs the workers to perform
the respective compiled operations.

Federated Workers are designed to carry out commands from the coordinator,
providing computing capabilities over their respective decentralized data. In fact, a
worker is the same program as the coordinator but started in a server-like mode
listening to a speci�c port at the federated site. Generally, the federated worker waits
passively for requests from the coordinator, performs the required computations
which might change the currently live intermediates of the worker, and responds
with the appropriate information. However, to simplify the interface between the
coordinator and the worker, and to reuse operation kernels, the possible requests
are limited to six prede�ned general subroutines, described in Section 2.1.3.

2.1.2 Federated Data Objects

�e term Federated Data denotes meta data at the coordinator, pointing to subsets
of data at the individual federated workers. Usually, federated learning addresses
the composition of several data parts at the federated workers as a single partitioned
federated data object. Although there are no limitations on the partition scheme, two
scheme types emerge as predominant in practice: row-partitioned (also horizontal
FL) and column-partitioned (also vertical FL).

In SystemDS, a federated data object at the coordinator comprises multiple arbitrary,
virtual data partitions that point to the actual data partitions at the federated work-
ers. �e key property of a federated data partition is that it resides on the federated
worker and can solely be addressed by the control program (coordinator) through
prede�ned requests to the worker (Section 2.1.3). In order to de�ne a federated
data object, the coordinator creates a virtual data object with information about
the composition of the partitions, as well as the main properties of the partitions
such as the network address of the worker nodes, the partition �lename, and the
individual dimensions of the partitions. �e following code example shows the
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2 Background and Challenges

creation of a row-partitioned federated matrix from the coordinator’s perspective
in SystemDS’ scripting language DML.
X = federated(addresses=list(node1/file1, node2/file2, node3/file3),

ranges=list(list(0, 0), list(15k, 80), # node1/file1
list(15k,0), list(70k, 80), # node2/file2
list(70k,0), list(110k,80))); # node3/file3

2.1.3 Federated Requests

�e communication between the control program (coordinator) and the federated
workers is based on remote procedure calls (RPCs). �e following six prede�ned
RPC procedures (called Federated Requests) specify the interface between the
coordinator and the worker:

1. READ: read a data object from the �lesystem and store it in the symbol table
2. PUT : extract the data object (transferred from the coordinator within the

request) and store it in the symbol table
3. GET : get the data object with the speci�ed ID from the symbol table of the

worker and return it as response
4. EXEC INST : execute the speci�ed instruction with the speci�ed inputs and

write the result to the speci�ed output
5. EXEC UDF : execute a given user-de�ned function1 (UDF) object
6. CLEAR: clean up the symbol table

2.1.4 Federated Runtime Plans

Performing model training on a federated data object with multiple federated
partitions o�en requires a coordinated consolidation of the resulting aggregates.
In SystemDS, specialized implementations of federated instructions coordinate
the execution of operations at the federated workers and potentially consolidate
partial results. Depending on the instruction as well as the partition scheme and
privacy constraints of the federated data, di�erent types of consolidations have to
be performed.

1UDFs are objects with a set of input IDs, a set of output IDs, and an arbitrary execute method
to perform computations with the speci�ed inputs and outputs
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2 Background and Challenges

When executing Federated ML pipelines, the coordinator takes the responsibility
to control the actions of the respective federated workers. In order to achieve this,
a compilation of federated runtime plans is required. �erefore, with the essential
federated plan compilation in SystemDS, the coordinator �rst creates a basic runtime
plan of local or distributed Spark instructions. In a second step, instructions on
federated data are replaced by the corresponding federated instructions. Besides the
translation from local instructions into federated instructions, SystemDS supports
cost-based and heuristic planners to directly compile the program into federated
instructions.

2.2 Multi-Tenancy

Adapting an FL system to support multi-tenant execution faces several challenges.
In this section, we describe the major problems of such an extension and elaborate
on their origin.

2.2.1 Tenant Isolation

�e key property of a multi-tenant federated backend is, that it supports concur-
rent training from multiple coordinators on the same federated sites. Hence, the
federated workers must be capable of processing simultaneous requests of di�erent
coordinators.

With the single-tenant design of SystemDS’ federated backend, workers do not have
to consider more than one sequential event sequence because only one coordinator
sends queued requests in a consecutive manner. Additionally, the federated workers
maintain just a single symbol table, since there cannot occur any variable name
con�icts because the coordinator controls the creation and deletion of entries in
the worker’s symbol table.

In multi-tenant mode, workers have to consider concurrent requests from multiple
coordinators. Since the coordinators control the variable creations at the worker
without synchronizing with each other, the problem of variable name con�icts
appears. �erefore, the challenge of isolating the symbol tables of di�erent coordi-
nators at the worker arises.
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2 Background and Challenges

2.2.2 Tenant Distinction

Before the tenants can be isolated at the federated worker, the worker needs to
distinguish between di�erent tenants. As the coordinators are independent of each
other and do not even know each other, it is impractical to assign an incrementing
unique ID to them. �us, the challenge arises to uniquely identify each distinct
coordinator from the perspective of a federated worker.

Furthermore, tenant identi�cation must not depend on properties that can be
a�ected by the coordinator itself, since it should not be possible for an adversarial
coordinator to imitate another coordinator. By this unin�uenceable identi�cation
we are able to ensure that a tenant cannot retrieve or modify the intermediates of
other tenants, and thus prevent a�acks from other coordinators.

2.2.3 Multi-Tenant Redundancy

As discussed before, we need a complete isolation of the coordinators’ individual
symbol tables to support multi-tenant execution at the federated site. Since the
federated worker typically refers to certain federated data, we recognize a high
reuse potential amongst the coordinator contexts on the federated worker.

A basic execution pipeline at the federated worker starts by reading the respec-
tive data partition from the �le system. Subsequently, pre-processing steps are
performed to prepare the federated data. Finally, when everything is set up, the
worker performs the learning task and responds to the requesting control program
with either an empty success message or with the resulting data.

Concurrent processing of multiple pipelines yields unnecessarily created interme-
diates and redundant computations. Consider the scenario of multiple coordinators
performing the same pipeline. With completely isolated symbol tables at the feder-
ated worker, every operation gets separately computed for each coordinator and
materializes the same result multiple times. In this case, the federated worker re-
dundantly performs the whole pipeline several times—including the reads from the
�lesystem, all computations, and even the serialization of the resulting response.

Nevertheless, redundant computations exist even in the case of di�erent ML pipelines.
Because of the a�liation of certain federated data to a particular federated worker,
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2 Background and Challenges

it is very likely that di�erent pipelines have to load the same data from the �lesys-
tem. In addition, the type of data pre-processing is very data-dependent, which
implies that ML pipelines on the same data usually have the same pre-processing
steps. �erefore, redundancy may exist in reading, computing, and serializing
individually.

For reusing across the isolated symbol tables, we have to detect identical intermedi-
ates. As computations consist of an arbitrarily large DAG (directed acyclic graph) of
operations, the challenge is to identify and match equivalent computations. More
precisely, we have to match the whole DAG of operations, as the entire history of a
computation—including the provenance of the data objects involved—determines
its identity. Since these operations o�en involve broadcast data from the coordina-
tor, the additional challenge is to inform the worker about the provenance of the
transferred data to deduplicate subsequent operations.

10



3 System Design

In this section, we provide an overview of the steps taken to support Multi-tenant
Federated Learning (MuTeFL) in SystemDS. Furthermore, we elaborate on the
reasons behind the design decisions made and explain how we integrated the
introduced components into the system.

3.1 Tenant Distinction

As already indicated in Section 2.2.2, we need an ability to di�erentiate the coordi-
nators at the federated worker. Without this capability, the worker will not be able
to isolate variables that belong to di�erent tenants.

To accomplish the separation between coordinators at the federated worker, we need
to identify the source coordinator for every request in order to associate the request
with the proper coordinator and execute it within the respective environment.
�is raises the question of what makes a coordinator unique from the worker’s
perspective. �e worker knows the IP address of the coordinator because requests
are sent over a network connection. Anyway, this alone does not necessarily identify
a particular coordinator, since it is just the public IP address that could be shared by
numerous coordinators located behind a proxy. Additionally, it may be desirable to
run multiple coordinators on the same machine, e.g., when several data scientists
are sharing a server. To provide these capabilities, we require an additional identi�er
to distinguish between the coordinators.

In SystemDS, every message that is transmi�ed from the coordinator to the fed-
erated worker opens a fresh network channel. Since a new channel also implies
a changed outgoing port, we cannot rely on the source port as an identi�er of
the coordinator. Instead, we include the process ID of the coordinator inside the
federated request and obtain it as an additional identi�er at the worker. Hence, we

11



3 System Design

di�erentiate the coordinators based on the combination of their public IP address
and their process ID.

Although the process ID resolves the problem of multiple coordinators running on
the same machine, coordinators on di�erent machines but behind the same proxy,
which coincidentally have the same process ID, can still lead to a collision. As this
is a very rare situation, we de�ne and document this particular case as a known
limitation of the system and do not address it further.

A second system limitation is showing up in networks using the Dynamic Host
Con�guration Protocol (DHCP). Since the IP address is part of the tenant’s identi�er,
the coordinator is recognized as a new tenant if its IP address has changed. �is
leads to incorrect identi�cation whenever the IP address is reassigned by DHCP.
Given the fact that this problem only occurs when the IP address is renewed, and
that o�ces usually con�gure a DHCP Lease Time1 of at least 24 hours [18], this
particular issue can be considered a limitation of the system.

3.2 Federated Lookup Table

In order to avoid variable collisions at the federated worker, complete isolation
of the coordinators’ processing contexts is required. Otherwise, the coordinators
will interfere with each other at the worker, resulting in overwrites and memory
corruption because they are not aware of each other’s variable handling.

We resolve the issue of interfering tenants by assigning each coordinator an indi-
vidual symbol table for life variables at the federated site. �en, the worker is fully
responsible to handle the isolation by storing the symbol tables, linking them to the
respective coordinators, and ensuring that tenants can only access intermediates of
their contexts. Before processing a federated request, the worker switches to the
symbol table, which corresponds to the requesting coordinator, and performs the
request on top of this particular environment. In contrast to an approach where the
variable ID handling is delegated to the federated worker, there is no need for the

1�e DHCP Lease Time is the time period that an IP address is reserved for a network device.
Upon expiration of the Lease Time, the IP address is returned to the allocation pool and the DHCP
server can reallocate it to another device.
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Figure 3.1: Tenant Isolation

coordinator to be aware of the isolation or anything related to it, since it is handled
passively at the worker.

With tenant-speci�c symbol tables, every coordinator is allowed to independently
control the execution process at the worker without synchronizing with others.
�is approach enables the coordinators to create, modify, and delete variables on
the worker, regardless of whether other coordinators use the same variable ID on
the worker or not (illustrated in Figure 3.1).

In SystemDS, the symbol table is stored inside a so-called execution context which
comprises the essential components of a certain computation procedure. �e ex-
ecution context itself is enclosed by a context map that manages the creation of
execution contexts. �is respective manager allows running the content of a paral-
lel for loop simultaneously by assigning an individual execution context to every
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3 System Design

parfor worker. �us, the concurrent loop instances are isolated from each other
and cannot interfere.

When it comes to MuTeFL, we face the same problem as with the parfor loop—
multiple concurrent accesses to variables that lead to collisions. �erefore, we
address this challenge similar to the context distribution of the parfor loop. In order
to keep the existing concept of execution context distribution, we perform the
division one level above at the context map.

We introduce the Federated Lookup Table that maps from a unique coordinator
identi�er to a coordinator-speci�c execution context map. Whenever a request
arrives at the federated worker, the worker identi�es the coordinator as speci�ed
in Section 3.1 and loads the corresponding execution context map from the lookup
table. Since the context map contains the actual contexts, every coordinator receives
a separate execution environment, and hence also a unique symbol table.

By assigning separate execution contexts to each individual coordinator, we ensure
that the intermediates of one coordinator are invisible to the other coordinators.
Since we process requests at the federated worker only using the appropriate
coordinator-speci�c execution context, coordinators can only address variables from
their respective contexts. As shown in Figure 3.2, requests by di�erent coordinators
are processed with their respective execution contexts obtained from the federated
lookup table. Furthermore, it is possible to perform parallel requests (e.g., from
a parfor loop), since the context map handles the di�erentiation of contexts for
parfor loops.

3.3 Multi-threaded Federated Worker

MuTeFL introduces the opportunity for multiple simultaneous computation requests
to the worker by more than one coordinator. �erefore, on the one hand, the
computations have to be performed in a concurrent manner, and on the other
hand, the worker should utilize all its available resources to process the existing
requests.

14
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Figure 3.2: Federated Lookup Table

Request Processing

As multiple tenants would like to perform simultaneous federated computations,
the federated worker needs to dispatch and process the requests concurrently.
Otherwise, one coordinator would receive the entire computational capacity of
the worker, while the other coordinators would have to wait for their turn. Some
computations could occupy the worker for several hours (e.g., a parameter server
worker thread), which constitutes a signi�cant obstacle in practice. In addition,
potentially involved I/O operations show substantial blocking time that could be
more e�ectively leveraged. Hence, multi-threaded handling of requests is needed
to establish responsiveness of the federated worker.

SystemDS makes use of Ne�y as a networking framework for the communication be-
tween the nodes of a federated infrastructure. On the federated site, a server socket
listens to a speci�c port for incoming requests. Ne�y’s event-driven dispatching of
requests is based on the Reactor architectural pa�ern, where the mechanisms to
demultiplex and dispatch events are separated from the actual application-speci�c
process by the use of distinct thread pools, known as the boss group and worker
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group [50]. When receiving a request from a coordinator, it is forwarded from the
network interface to the boss event executor group, which dispatches the requests
to further event executor threads from the worker group for the actual execution.
�e worker-threads are then responsible to carry out the request and create the
response. For a single-threaded request processing, only one thread per group is
required. �e boss-thread accepts the requests and instructs the worker-thread
to perform them, sequentially. With the single-threaded event loop, concurrent
requests are queued and processed one a�er the other.

To enable simultaneous request processing in SystemDS, we should �rst determine
the duties of the boss group and worker group. �e only task of the boss-thread
is to accept the incoming serialized federated requests and distribute them to the
available worker-threads or queue them if no worker-thread is available at the
moment. As this distribution task is not very computing intensive, we identify
the possibility to con�gure the boss-group single-threaded. �e time-consuming
computations (i.e., the request deserialization, the actual request processing, and
the response serialization) take place at the level of the worker group. �erefore, a
multi-threaded con�guration of the respective worker event executor pool becomes
necessary to eliminate the issue of long-lasting, blocking computations at the
federated site.

Anyhow, the thread pool of the worker group has to be limited by an upper bound,
since creating too many threads would result in a decrease in performance. A
general state-of-the-art guideline is to relate the thread pool size to the number
of CPU cores. Furthermore, the book Java Concurrency in Practice [26] suggests
con�guring the pool size in accordance with the following formula:

Nthreads = Ncpu · Ucpu ·
(
1 +

W

C

)
(3.1)

�is formula relates the number of available CPU cores Ncpu to the desired factor
of CPU utilization Ucpu and scales it by the expected ratio of wait time W to
compute time C . In our case, we aim to utilize the full available CPU resources
at the federated site. Hence, the target CPU utilization is Ucpu = 1. �e ratio of
the wait time to the compute time is mostly a�ected by executed I/O operations.
Since the received federated requests can consist of I/O operations as well as purely
computational operations, we cannot stick to a general value for this ratio. However,
taking into consideration that the upper bound of the worker threads is applied
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only to the worker group, and that the underlying operations have their own level
of parallelism, we decide to set this ratio to the smallest value W

C
= 0. �erefore,

we cap the maximum number of threads for the worker group by the number of
CPU cores Nthreads = Ncpu.

Operation Execution

As already mentioned in the previous section about Request Processing, we aim
to utilize the entire computation capacity for the federated worker. �erefore, we
set the concurrency level for request processing according to the available number
of CPU cores. However, this type of concurrency only applies to simultaneously
processed federated requests from di�erent coordinators. Hence, if only a single
coordinator makes use of the federated worker, the capacity of the worker is not
fully utilized.

Since operation-level multi-threading also has major importance in local execution
with SystemDS, most of the operators are already quali�ed to run with multiple
threads. As indicated in Section 2.1.4, we create the runtime plan at the coordinator
and request the federated worker to execute the contained federated instructions.
�ese instructions, however, were constructed with the level of parallelism of the
coordinator. �erefore, also the included operator is created with the coordinator-
speci�c number of threads. In the case of di�erent CPU capacities of the coordinator
and the workers, the worker executes the operation with incorrect parallelism,
which results either in not using the full capacity because we have too few threads,
or in a slow performance because we have too many threads.

We resolve this issue by se�ing the number of threads of each multi-threaded
operator of a federated request according to the worker’s level of parallelism. �e
worker inspects whether the operator inside an incoming request for executing an
instruction is a multi-threaded operator to substitute the coordinator’s thread size
with its own parallelism. �e applied operation-level-concurrency of the worker is
set either individually via the con�guration or to the default value, which corre-
sponds to the number of available CPU cores. �erefore, the worker now executes
the operations with its preferred level of parallelism.

Combined with the multi-threaded request processing of the previous section, the
total thread count of the worker is determined hierarchically by the number of
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Figure 3.3: Multi-threaded Federated Worker

coordinators and the operation-level-parallelism (illustrated in Figure 3.3). Although
this number can reach from 1 to the squared number of CPU cores, we expect it
to scale at a reasonable level for conventional usage, since rarely the maximum
number of concurrently operating coordinators—bound to the number of threads
in Ne�y’s worker group—executes operations at the same time. In addition, some
operators can only be executed single-threaded and there might be blocking I/O
operations involved which allow the execution of other threads. Furthermore,
under heavy usage of the worker, we are more likely to over-provision CPU threads,
which is generally a good idea in order to overlap �ne-grained stalls, waits, and
front-end-bound operations.

3.4 Federated Read Cache

Since the coordinators are now completely isolated at the federated worker, we
identify a high probability that some tasks will be performed redundantly by
di�erent coordinators. Given that a federated worker usually refers to a certain
dataset, coordinators addressing the worker o�en perform computations on the
same data. To be able to address the data at the federated site, each coordinator �rst
requests the worker to read the respective data. �e worker then loads the data from
the �le system into the coordinator’s individual execution context. Since reading
from the �le system is very slow, we recognize the advantage of caching this data for
other coordinators to avoid redundant reads and redundant memory consumption
in subsequent requests, which also impacts garbage collection overheads.
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We introduce the Federated Read Cache as a caching mechanism for read data
objects at the federated worker. �e Federated Read Cache is basically a map that
associates a �lename with a stored data object. Whenever the worker receives a
request to read the data from a �lename, it will �rst lookup the Federated Read
Cache if the data object associated with that �lename can be obtained from the
cache. If the requested data is not present in the cache, however, the worker has to
create a new data object from the �lename, but directly puts a placeholder into the
Federated Read Cache so that it is cached for the next request that comes along.

Figure 3.4 shows the scenario of two coordinators requesting to read the same data
�le. Since the request from Coordinator 1 is processed �rst and the data object is
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not cached at this point, the worker has to load the data �le from the �le system
and places it directly in the cache. Simultaneously, when processing the request
from Coordinator 2, the cache contains either the data object or a placeholder to
indicate that it is currently being read. �erefore, the worker waits, if necessary,
until the data object is in the cache, and then fetches it from the cache by moving
the pointer of the existing data object into the execution context of Coordinator 2
instead of loading the data again from the �le system.

In SystemDS, a data object like a matrix or frame consists of the data block that
contains the actual data and some meta information like the ID and the �lename.
Data blocks are kept in-memory as long as possible, meaning that even though
the data is currently not in use, it will stay in memory until we have to evict it
because of memory requirements. �is eviction to the disk is realized by writing
the data block to a bu�er pool that might write it to the �le system and ensure
being able to reconstruct the object, and subsequently creating a so� reference to
the corresponding in-memory block. �e garbage collector then clears the entries
of the so� references when memory is needed, requiring us to load the data block
from the disk when it is needed again.

�e automatic caching of data objects in SystemDS allows us to continuously
populate the Federated Read Cache without ever removing one of its entries. Since
the Federated Read Cache does not store the actual data but the corresponding
data object, the contained data block is automatically wri�en to the �le system
and evicted from memory when necessary. �erefore, the increase in memory
consumption by the cache involves only the stored data objects (i.e., the meta-
information) without the actual data.

3.5 Lineage-based Read Reuse

SystemDS comes with the integrated LIMA framework for �ne-grained lineage
tracing and reuse [45]. �is framework maintains the lineage trace for all life
variables in order to exactly identify an intermediate result. �ese lineage traces
are then leveraged by the lineage-based reuse infrastructure, which allows for full
and partial reuse of intermediates based on a dedicated reuse cache with cost-based
evictions. However, the lineage cache is only built and utilized if the reuse by
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lineage is enabled, which is activated by se�ing a dedicated �ag that is passed to
the program at startup.

As we already maintain a reuse cache if lineage-based reuse is activated, we also
leverage it for read caching (see Section 3.4). �erefore, when reuse by lineage is
enabled and the federated worker receives a request to read a data �le, we �rst
a�empt to obtain it from the lineage cache instead of the Federated Read Cache
and store the loaded data into the lineage cache a�er a cache miss. However, as
the lineage cache is designed to store matrices, we still rely on the Federated Read
Cache when reading frames, even in the case of the enabled lineage-based reuse.

Since the lineage-based reuse mechanism identi�es the intermediates by their
lineage trace, we need to associate the newly populated data with its lineage. �us,
we create a lineage item for each data �le that is read from the �le system, containing
solely the �lename, to construct a one-level lineage trace. Additionally, because the
lineage cache eviction is cost-based, we measure the time needed for loading the
data from the disk and tag the newly created cache entry accordingly.

�e lineage cache is limited to a precon�gured absolute memory budget (default:
5% of the heap size). To ensure that this limit is not exceeded, the cache eviction
constantly has to remove cache entries once the limit is reached. �erefore, the LIMA
framework [45] introduced the lineage cache eviction with three con�gurable cost-
based eviction policies (LRU, DAG-Height, Cost & Size), that take various statistics
into account, such as the time for producing the cached object, the size of the object,
and the usage of the cache entry.

By caching the read data in the lineage cache, we build a collective cache for
all the cacheable intermediates. In contrast to separated caches, a joint cache
has the advantage to avoid under-utilizing individual caching budgets. �erefore,
the cache limit can be handled much be�er, since the cache entries are evicted
according to their bene�ts, regardless of whether they are coming from reads or
from intermediate results.
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3.6 Lineage Trace Transfer

�e LIMA framework [45], which is integrated into SystemDS [10], maintains the
lineage for life variables at runtime in terms of their lineage trace of operations.
A lineage trace is basically a directed acyclic graph (DAG) whose nodes contain
information about the performed operations and whose edges represent data de-
pendencies. �erefore, we are able to exactly identify a variable by its lineage
trace.

Anyhow, the federated worker cannot infer the lineage of variables transmi�ed
from the coordinator (broadcast variables), as it does not know what operations
were performed by the coordinator to generate these variables. In order to maintain
a complete set of lineage traces at the federated worker, we have to inform the
worker about the lineage of a broadcast variable. �erefore, we serialize the entire
lineage trace of a single variable before broadcasting and append the serialized
lineage trace to the respective request. �en, a�er transmi�ing the request to
the federated worker, we deserialize the lineage trace and relate it again to the
corresponding broadcast variable.

�e lineage trace of a variable consists of the information about the underlying
operation and the lineage traces of the respective input variables of the operation
in a recursive way. �e nodes of this lineage DAG are called lineage items. Every
input variable in the lineage trace represents a variable itself, and hence, comprises
an individual lineage item with a unique ID.

Serialization: To serialize the lineage trace of a single variable, we traverse the
DAG of lineage items in a depth-�rst manner. Starting from the lineage item of the
respective variable, we append the string representation of the current lineage item
to the overall serialization, which consists of the ID, the operation-code, and the
IDs of the child nodes.

Deserialization: �e deserialization is then realized exactly the other way around
than the serialization. Traversing the serialized lineage items in the reverse direction
allows for the recreation of the entire lineage DAG. Since during the previous
serialization input nodes are processed a�er the referencing lineage item, they are
processed before the referencing lineage item when deserializing, which allows to
directly link the nodes of the lineage DAG to their children.
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3.7 Federated Lineage Reuse

Due to the data-dependent applicability of pre-processing pipelines, the pre-processing
steps are o�en identical for the same data, regardless of the following training
pipeline. Hence, individual coordinators conducting di�erent training pipelines on
the same federated data usually still share the same pre-processing steps. �erefore,
we recognize the high computational redundancy between the coordinators’ isolated
processing contexts at the federated worker. Additionally, iteratively performed ML
pipelines show partial overlaps across the iterations because the iterative changes
are relatively small (e.g., adapting the learning rate in gradient-based optimization),
so that some subexpressions remain the same.

�e LIMA framework [45] addresses redundant computations by introducing the
lineage-based reuse cache for reusing intermediates. �e lineage cache associates
each cached intermediate with its respective lineage item, allowing for exact identi�-
cation of the variable based on the corresponding lineage trace. Before computing a
fresh intermediate, the lineage item for the computation is created in order to probe
the cache for a match. If a match is found, the intermediate can be obtained from
the cache instead of computing it again. �e lineage trace comparison is possible
by creating the lineage DAGs and comparing every node for equivalence.

With the Lineage Trace Transfer introduced in Section 3.6, we are now able to utilize
the full potential of the lineage-based reuse mechanism at the federated worker.
In order to eliminate computational redundancy between operations of di�erent
coordinators, we have to reuse intermediates across di�erent processing contexts.
�erefore, we build a single lineage cache at the worker, which jointly collects
intermediates from all processing contexts. Although each context maintains its
own lineage map, which associates variables with their corresponding lineage item,
it is possible to compare the lineage traces from di�erent lineage maps, since all
individual operations from the entire trace are compared against each other. �is
capability allows for reusing computations between processing contexts using the
same lineage cache.

Figure 3.5 shows the setup of two coordinators both performing the same com-
putation at the federated worker. As the execution request from Coordinator 1
arrives �rst, the worker has to execute the requested computation and create the
intermediate. However, before starting the computation, a placeholder-entry for
this respective intermediate is placed in the cache to indicate that the value is
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currently being computed. �is placeholder gets then immediately replaced with
the intermediate value itself once the computation is completed. When requesting
the same execution for Coordinator 2, we �rst probe the lineage cache for a match
and obtain the corresponding cache entry. If the entry is a placeholder, the Coor-
dinator 2 waits until the value of the placeholder is available and then reuses the
intermediate. Otherwise, if the cache entry is not a placeholder, we can directly
reuse the intermediate from the cache.

3.8 Response Serialization Reuse

Data pre-processing forms a crucial component in ML work�ows and is o�en
considered the central part of ML projects. In federated ML applications which
only require the data pre-processing pipeline to be performed federated, the pre-
processed data is sometimes pulled to the coordinator, where it is then analyzed
locally to avoid the performance costs of the network communication. Before the
resulting pre-processed data can be transmi�ed to the coordinator, it �rst needs
to be serialized. Even though pre-processing pipelines o�en involve some sort of
dimensionality reduction, these results can be very large. �erefore, the process of
serializing the responses from the federated worker is a signi�cant contributor to
the overall execution time.

As mentioned in Section 3.7, pre-processing pipelines are strongly data-dependent.
Hence, we expect coordinators to perform the same pre-processing steps for the
identical data on a federated site. In a scenario where the coordinator pulls the
pre-processed results from the worker to itself, it is very likely that the next coor-
dinator which obtains the pre-processed results will fetch exactly the same data.
In such a case, we are able to reuse the computation through the Federated Lin-
eage Reuse mechanism (introduced in Section 3.7), but we have to serialize the
reused intermediate for every transmission. �erefore, we see the possibility to also
reuse serializations of transmi�ed results in order to save the time of redundantly
serializing responses at the worker.

In SystemDS, the Ne�y framework is used to handle the network communication.
Since Ne�y transmits a serialized network message as a ByteBuf, representing
a sequence of bytes, we extend the lineage-based reuse cache with the ability to
also store byte arrays in addition to matrices. �erefore, when we reply to the
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coordinator with some data, we can now obtain the serialized byte array from the
created bu�er and put it into the lineage cache for the next time we need it.

To identify the newly inserted cache entry, we have to associate the byte array
with a corresponding lineage item. As we cannot make use of the lineage from the
underlying data object because it is already in use for the non-serialized intermedi-
ate, we indicate the serialization by a�aching a lineage item for the serialization
procedure to the original lineage. Hence, the lineage item for a serialized response
is represented by a lineage item with the operation-code ”serialize” and a single
input which is the lineage of the underlying data object. �is additional lineage
item allows to distinguish between the serialized response of a data object and
the data object itself while keeping the lineage trace comparison as described in
Section 3.7.
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Our experiments study the bene�t and behavior of the introduced features and opti-
mizations of MuTeFL by performing an ablation study of the individual techniques.
We �rst conduct micro benchmarks to investigate the impact—in terms of perfor-
mance and memory consumption—of each technique individually. Subsequently, we
carry out algorithm-level experiments to examine the e�ciency of the introduced
reuse techniques. Finally, we study the overall e�ect of our MuTeFL system by
simultaneously running several hyper-parameter optimization routines.

4.1 Experimental Setup

Hardware: In our experiments, we distinguish between two di�erent nodes:

1. α-node: An α-node is equipped with two Intel Xeon Gold 6238R CPUs at
2.2-2.5 GHz having 28 physical cores and 56 virtual cores each. Each α-node
has 768 GB DDR4 RAM at 2.933 GHz balanced across 6 memory channels
per socket.

2. β-node: A β-node is equipped with a single AMD EPYC 7302 CPU at 3.0-3.3
GHz having 16 physical cores and 32 virtual cores. Each node has 128 GB
DDR4 RAM at 2.933 GHz balanced across 8 memory channels.

So�ware: �e so�ware stack comprises Ubuntu 20.04.1 as operating system, Open-
JDK Java 11.0.13, and SystemDS 3.0.0++. For our micro benchmarks and for the
algorithm-level experiments, we use consistent JVM con�gurations of -Xmx64g
-Xms64g -Xmn6400m for the federated workers, whereas the coordinators use
the JVM con�guration of -Xmx32g -Xms32g -Xmn3200m, except for the exper-
iments of the Multi-threaded Event Loop where they use -Xmx16g -Xms16g -
Xmn1600m. For the �nal performance experiment, we use the JVM con�guration of
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-Xmx110g -Xms110g -Xmn11000m for the federated worker and -Xmx32g -
Xms32g -Xmn3200m for each coordinator.

Setup: �roughout our experiments, we distinguish between three di�erent setups
of the federated infrastructure:

1. Local: All coordinators and workers run on the same server node and com-
municate over the loopback interface with each other.

2. LAN : �e coordinators all run on one server node and each federated worker
runs on a separate node. Since all nodes belong to the same cluster, they
connect to each other in a local area network (LAN) of two racks, connected
via an HPE FlexFabric5710 48XGT switch.

3. WAN : In addition to LAN, we emulate a wide area network (WAN) by adding
a NetEm [4] queuing discipline to the network interface. Inspired by the WAN
se�ing of the experiments in the ExDRa paper [9], we thereby add a delay of
47.5 ±12.5 ms and limit the bandwidth to 2 MB/s. �e exact command to limit
the outgoing tra�c is tc qdisc add dev eth0 root netem delay
47.5ms 12.5ms 25% rate 2mbps, executed on both the coordinators

and the federated workers.

Datasets: We conduct our experiments on randomly generated synthetic data, vary-
ing the number of rows and keeping the number of columns constant. Furthermore,
we perform the micro benchmarks with 500 columns and increase them to 1000
columns for the algorithm-level tests and the hyper-parameter optimizations.

Workloads: �e tested workloads include various primitives for the micro bench-
marks, linear regression (LM) and principal component analysis (PCA) followed by
DBSCAN for the algorithm-level tests, and linear regression (LM) with and without
PCA preprocessing for the overall performance experiment.
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4.2 Micro Benchmarks

Multi-threaded Event Loop

We observe the impact of the Multi-threaded Event Loop (Section 3.3) on the system
performance by comparing it to the same system with a Single-threaded Event Loop.
For this experiment, we set up a WAN infrastructure with two β-nodes—one for the
coordinators and the other for a single federated worker. We transfer a randomly
generated matrix with 500 rows and 500 columns to the federated worker and read
the federated matrix on the worker. �en, we perform a matrix multiplication of
the federated matrix with the transferred matrix, followed by the sum, and pull
the resulting scalar to the coordinator. We repeat this routine several times with
both systems, varying the number of rows of the federated matrix and the number
of simultaneously executing coordinators. Finally, we report the end-to-end times
for the completion of all coordinators and show them in comparison between the
two systems in Figure 4.1, where we observe a steadily increasing speedup as the
number of concurrently executing coordinators increases.

384000 Rows (static 500 Columns) 512000 Rows (static 500 Columns)

128000 Rows (static 500 Columns) 256000 Rows (static 500 Columns)

2 4 6 8 2 4 6 8

0

20

40

60

80

0

20

40

60

80

Number of Coordinators

E
xe

cu
tio

n 
T

im
e 

[s
ec

]

Parallelism Single−threaded Multi−threaded

Figure 4.1: Multi-threaded Event Loop
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Multi-threaded Operator

�e dynamic adaptation of the operator parallelism at the worker (Multi-threaded
Operator in Section 3.3) is useful in a setup with nodes of di�erent parallelism.
�erefore, we deploy a LAN federated infrastructure with an α-node for the feder-
ated worker and a β-node for the coordinator. �is setup is intended to represent,
for example, a data scientist running the coordinator on a laptop (low degree of
parallelism) in order to analyze federated data from a worker deployed on a server
(high degree of parallelism). We then perform the mean-operation, the matrix
multiplication with a generated 500×500 matrix, and the sum-operation of the
federated matrix, while varying the number of rows. Finally, we show the execution
times of the mean-operation (Figure 4.2), the matrix multiplication (Figure 4.3), and
the sum-operation (Figure 4.4) for the system with adapted parallelism and the
reference system with static parallelism.

By adapting the parallelism on the worker, we now observe an improvement of
approximately 2.25× for the mean-operation (shown in Figure 4.2), and an improve-
ment of around 1.5× for the matrix multiplication (shown in Figure 4.3) as well as
for the sum-operation (Figure 4.4).
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Ne�y Bu�er Allocation

During our work, we introduced the dynamic allocation of Ne�y’s bu�er for net-
work transmissions. Instead of statically allocating the bu�er size (256 Bytes by
default) and increasing it as needed, we now estimate the size of the object to be
transferred and directly allocate the estimated size, which results in a signi�cant
performance improvement for data transfers. To capture this improvement, we con-
duct experiments on the system before dynamic bu�er allocation was introduced
(commit 20874451) and compare it to the system with dynamic bu�er allocation
(commit ba32d042). In order to measure exact transmission times across the coordi-
nator and the worker, we construct a Local federated infrastructure on a β-node
with one coordinator and one federated worker, and perform an element-wise sum
of the federated matrix with a broadcast matrix of the same size, while varying the
number of rows. Subsequently, we pull 90% of the resulting matrix to the coordina-
tor. In Figure 4.5, we present the transmission times for the broadcast request and
for the response retrieval of both systems, which show an improvement of 2× for
the dynamic bu�er allocation compared to the static bu�er allocation.
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2h�ps://github.com/apache/systemds/commit/ba32d0499857f244406b44889a9��791e9cf92
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Federated Read Reuse

�e introduced reuse of read objects at the federated worker (Sections 3.4 and
3.5) eliminates redundant reads from the �le system, and hence bene�ts both
performance and memory consumption. �erefore, we evaluate the runtime for
processing read requests and the respective memory consumption in three di�erent
se�ings: (1) without read reuse, (2) with the Federated Read Cache (Section 3.4),
and (3) with Lineage-based Read Reuse (Section 3.5). For this experiment, we
deploy a LAN federated infrastructure with one federated worker on a β-node and
two simultaneously executing coordinators on a single β-node, both performing
a sum-operation on the same federated data. We then measure and report the
aggregated times for processing the read requests at the worker in Figure 4.6, the
maximal memory consumption of the worker during execution in Figure 4.7, and
the remaining memory consumption at the worker a�er execution and cleanup of
both coordinators in Figure 4.8.

In Figure 4.6, we observe a slight speedup from the reuse systems compared to the
reference system. Figure 4.7 clearly shows the overhead in memory consumption
from the reference system caused by the duplicated read data objects that are
avoided from the Federated Read Cache and the Lineage-based Read Reuse by
reusing the in-memory data objects. Figure 4.8 shows the remaining memory
consumption from the reuse systems that grows linearly with the data size and
comes from the cached data objects, whereas the reference system consumes almost
no memory a�er the execution.

Since, when the coordinators are executed concurrently, the times for processing
the read requests contain the waiting time for the other coordinator to complete
the read from the �le system and put the data object into the cache, we additionally
perform the same experiment with sequentially started coordinators and report
the respective times from the reads in Figure 4.9. For that reason, the reuse systems
need only half as much time as the reference system to process the read requests
(shown in Figure 4.9), because the �rst coordinator performs the actual read from
the �le system and the second can directly take the data object from the cache
instead of reading it from the �le system again.
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Figure 4.6: Read Reuse Performance - Concurrent Coordinator Execution
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Figure 4.9: Read Reuse Performance - Sequential Coordinator Execution
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Lineage Trace Transfer

Since the introduced Lineage Trace Transfer (Section 3.6) is an addition to the
base system, we evaluate the overhead incurred by the additional serialization and
deserialization of the lineage trace, as well as the overhead in the transmission of
the larger federated request. For this purpose, we deploy a WAN infrastructure with
one coordinator on a β-node and a single federated worker on a β-node. For the
experiment, we then generate a 1000×500 matrix on the coordinator and another
on the federated worker. In order to evaluate di�erent sizes of the lineage trace of
the matrix on the coordinator, we modify the matrix in a for loop by performing
a simple plus operation with a scalar which adds one lineage item per iteration.
In this way, we vary the number of lineage items in our transferred lineage trace
and measure the time required to serialize and deserialize the lineage trace (Figure
4.11). Additionally, we measure the time overhead from the broadcast transmission
(joint time from request and response transmission) by subtracting the execution
time of the instruction at the worker from the time at the coordinator and report
the resulting transmission times in Figure 4.10.

�e overhead in the transmission time caused by including the lineage trace is
clearly visible in Figure 4.10, as we can see, for example, in the experiment with 50k
lineage items, where we have an overhead of almost 0.8 seconds compared to the
transmission without lineage trace. In addition, Figure 4.11 shows the overhead from
serializing and deserializing the lineage trace, which adds another overhead of 0.64
seconds for the case of 50k lineage items. �erefore, the transfer of the lineage trace
with 50k lineage items adds a total overhead of 1.44 seconds in our experiments,
corresponding to an overhead of 0.0288 milliseconds per lineage item.
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4.3 Algorithm Performance

In the Algorithm Performance experiments, we observe the impact of the introduced
techniques of Federated Lineage Reuse (Section 3.7) and Response Serialization
Reuse (Section 3.8) on the level of a simple algorithm execution.

Lineage Reuse at the Federated Worker

Since the Federated Lineage Reuse (Section 3.7) saves computation time but also
adds a certain overhead in runtime due to the reuse checks and caching, we are
interested in whether and how much time is actually saved by this reuse. �erefore,
we set up a Local federated infrastructure on a β-node for multiple coordinators
and a single federated worker. With each coordinator, we train a linear regression
model on a federated matrix with 1000 features and a federated vector, while
varying the number of sequentially executed coordinators and the number of rows
of both federated data objects. During execution, we capture the time spent on
reuse (checking the reuse cache and pu�ing the data into the cache) and the time
saved by reusing at the federated worker, and compare these times in Figure 4.12.

From the time stacks in Figure 4.12, we can directly recognize that the saved time
outweighs the time spent in the case of multiple coordinators. However, when
performing the experiment with one coordinator, we cannot reuse any intermediate
since there are no redundant federated computations in a single execution. Figure
4.12 also shows the increase in the saved computation time as the number of rows
increases, while the time for the reuse check remains the same since it does not
depend on the data size.
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Figure 4.12: Lineage-based Reuse Times

Response Serialization Reuse

Similar to the Federated Lineage Reuse, Response Serialization Reuse saves serial-
ization time but also consumes runtime to probe the cache and put the serialization
into the cache. �erefore, we are again interested in whether and how much time is
saved by reusing the serializations. In this experiment, we deploy a Local federated
infrastructure on an α-node for multiple coordinators and with two federated work-
ers. We create a row-partitioned federated matrix of 1000 columns with equal-sized
partitions on the federated workers. Subsequently, we perform PCA without dimen-
sionality reduction (keeping all components of the data) as a preprocessing step
before clustering the data using DBSCAN, while varying the number of sequentially
executed coordinators and the number of rows. �roughout this experiment, we
record the time saved by reusing the serializations and the time spent on checking
the reuse cache and pu�ing the serialized bytes into the cache, and compare these
for each worker in Figure 4.13.
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Similar to the previous experiment, Figure 4.13 shows no saved time for the execu-
tions with one coordinator. With the increasing number of coordinators, we can see
a slight advantage of the saved time for the experiment with 8000 rows and with
16000 rows, whereas this advantage is clearly visible for the experiment with 24000
rows. In addition, we observe an increase in time for the reuse check, coming from
writing the reused serialized bytes into the bu�er for the network transmission.
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Figure 4.13: Response Serialization Reuse Times

40



4 Experiments

4.4 Hyper-parameter Tuning Performance

In this experiment, we try to simulate four data scientists who concurrently perform
hyper-parameter optimization of a linear regression model. Two data scientists
perform PCA on the data as preprocessing step and also include the selected
number of components in the hyper-parameters to optimize, whereas the other
two data scientists train the model on the plain data. Table 4.1 shows the tested
hyper-parameters for each data scientist (i.e., coordinator).

Table 4.1: Overview of Hyper-parameters
Coordinator λ intercept tolerance k (PCA)

I [10−9, 10−2] [0, 6] [10−12, 10−6] N/A
II [10−3, 100] [0, 2] [10−12, 10−9] {300, 400, 500}
III [10−7, 100] [−3, 3] [10−10, 10−4] N/A
IV [10−5, 10−2] [0, 2] [10−10, 10−7] {250, 500, 750}

We deploy a LAN federated infrastructure with one β-node for the four coordi-
nators and one β-node for the federated worker. �e coordinators iterate over all
combinations of the tested hyper-parameters, in every iteration training the model
with the respective hyper-parameters and computing the adjusted R2 score to �nd
the best parameters. In the experiment, we start all four coordinators concurrently
with a shared federated matrix of 4000 rows and 1000 columns.

We conduct this experiment for three di�erent baselines:

1. Reference System: In order to compare to a reference system, we disable the
Federated Read Cache, the parallelization level adaptation from the Multi-
threaded Operator, and the Lineage Trace Transfer. Additionally, we change
the event loop to be single-threaded and deactivate the lineage-based reuse
on both the coordinators and the federated worker.

2. MuTeFL-W System: We include all concepts introduced in this work, but
deactivate the lineage-based reuse on the coordinators while activating it for
the federated worker.

3. MuTeFL-L System: Includes all concepts of this work, with lineage-based reuse
activated on both the coordinators and the federated worker.

We report the total execution times for each individual coordinator of the three
baselines in Figure 4.14, where we observe a great di�erence to the MuTeFL-L
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System coming from local eliminations of federated computations. However, we also
see the bene�t of the MuTeFL-W system, as the four coordinators clearly show faster
execution times. Additionally, we measure the maximal memory consumption on
the federated worker during execution (shown in Figure 4.15), where we recognize
a small overhead from both MuTeFL systems compared to the Reference System.
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Figure 4.14: Hyper-parameter Optimization - Coordinator Execution Times
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In addition to the total execution times, we are interested in the times of Feder-
ated Lineage Reuse, Lineage-based Read Reuse, and Response Serialization Reuse.
�erefore, we record the saved time, the time to perform the reuse checks, and
the time to put the values into the cache, and present them distinctly for the three
optimizations in Figure 4.16 for MuTeFL-W and in Figure 4.17 for MuTeFL-L. We
can conclude from both �gures that all three reuse techniques positively a�ect the
runtime in our experiments. �e di�erence in reuse times between the MuTeFL-W
system (Figure 4.16) and the MuTeFL-L system (Figure 4.17) again comes from the
elimination of federated computations from the MuTeFL-L system. Note that the
saved computation time does not necessarily correspond to the di�erence in total
execution times from Figure 4.14, since it is measured during the �rst computation
of each intermediate and summed up as the intermediate is reused.
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Since the introduced concept of Lineage Trace Transfer creates an overhead in
runtime, we count the number of lineage trace transfers and measure the times
for serializing and deserializing the lineage traces. Table 4.2 reports the respective
statistics that do not indicate a substantial impact on the total execution times from
Figure 4.14.

Table 4.2: Lineage Trace Transfer - (De-)Serialization Times
# Transfers Serialization Deserialization

MuTeFL-W 5056 0.7874 sec 1.8708 sec
MuTeFL-L 2191 0.5906 sec 0.8914 sec
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5 Related Work

�e MuTeFL concept extends the privacy-enhancing technology of Federated Learn-
ing by combining techniques from various research areas such as Multi-tenant
Cloud DBMS and Reuse of Intermediates in ML systems. Since MuTeFL relies
on Federated Learning, it is highly related to the �elds of Federated Databases,
Federated �ery Processing, and Privacy-preserving ML.

Federated Learning: First mentioned in 2016 [39], the term Federated Learning (or
Collaborative Learning) denotes a privacy-preserving ML technology that aims
to train ML models on distributed data without consolidating and revealing the
sensitive data to a central party. Early applications of Federated Learning (FL)
focused on training models directly on user devices [15, 27, 48]. �e great success
of FL resulted in the formation of further applications in industry as well as in
health care [58, 46, 13, 42, 59]. Over the years, research on Federated Learning has
been conducted in many di�erent directions and thus, experienced a number of
developments, such as performance and accuracy improvements [53, 31, 57], the
privacy enhancement of the algorithms [16], robustness of the FL system [36], and
the heterogeneity of federated sites [17].

Privacy-preservingML: Federated Learning emerges as an important technique in the
�eld of privacy-preserving ML. Besides Federated Learning, active research is done
on the techniques of Di�erential Privacy (DP) [20, 21], Homomorphic Encryption
(HE) [7, 30, 34], and Multi-party Computation (MPC) [40, 33]. In contrast to FL,
HE and DP require a central consolidation of the data. Although in MPC the data
remains distributed, it su�ers from a high communication overhead in big data
work�ows coming from the exchange of secrets between the parties. Recent work
on privacy-preserving ML also considers the combination of FL with HE to protect
against threats from the server when the model itself contains sensitive data or raw
data can be reconstructed from the aggregates (e.g., batch size of 1) [37].
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5 Related Work

Multi-tenant Cloud DBMS: �e multi-tenant utilization of distributed resources
and the objective of tenant isolation are important principles of both MuTeFL and
Multi-tenant Cloud DBMS [43]. Additionally, also the caching of intermediates is
a present topic in the �eld of Multi-tenant Cloud DBMS [44]. Examples of such
systems are Microso� SQL Azure [3] and Apache Cassandra [1].

Reuse of Intermediates: �e optimization of the MuTeFL system strongly relies on
the lineage-based reuse technique of the LIMA-framework [45]. �is approach of
identifying redundant computations and reusing them is related to the Automatic
Materialization of KeystoneML [54] and the Common Subexpression Elimination of
TensorFlow [6], with the di�erence that LIMA is a runtime technique with compiler-
assistance. Due to the conditional control �ow, common subexpression elimination
cannot eliminate certain types of redundancy. �e technique of eliminating redun-
dancy of operations is also related to the suppression of partial redundancies in the
�eld of compilers [41, 19].

Federated Database System: �e main component of a Federated Database System
(FDBS) is the So�ware to manipulate distributed data across autonomous databases—
the Federated Database Management System (FDBMS) [29, 52, 8]. �e task of an
FDBMS to manage data that is distributed among multiple databases is of a similar
nature to the job of a federated infrastructure with data at the federated sites. Recent
work on FDBMS even deals with the distribution of data among di�erent types of
databases (graph-based, document-based, and relational databases). Examples are
wrappers in Db2 [5], CloudMdsQL [32], BigDAWG [25], Myria [56], and Apache
Drill [2, 28]. In the context of Federated Database Systems, Federated �ery Pro-
cessing (FQP) techniques provide a uni�ed interface to access the distributed data
[22]. FQP engines have the responsibility to translate a federated query expressed
in the global schema to a local query which can be executed at the individual sites.
�is concept of translation is similar to the Federated Runtime Plan creation of
SystemDS’ federated backend (Section 2.1.4). Example FQP engines are Ontario
[24], FedX [51] based on SparQL Federated �ery [14, 47], and MULDER [23].

46



6 Conclusions

To summarize, we introduced MuTeFL, an extension of a federated backend to
support multi-tenant execution. �e introduced technique of Tenant Distinction
together with the Federated Lookup Table ensure robust and safe management
of multiple coordinators at the federated worker. �e Multi-threaded Event Loop
and the Multi-threaded Operator allow for e�cient utilization of the resources
at the federated worker. To eliminate I/O time from redundant �le system reads,
we maintain the Federated Read Cache or leverage the lineage cache if activated
by the means of Lineage-based Read Reuse to reuse already read data objects.
With the Lineage Trace Transfer, we complete the lineage map at the federated
worker, including the lineage from broadcast data objects, which we then leverage
by enabling lineage-based reuse at the federated worker (within and across isolated
coordinators) with the Federated Lineage Reuse. Response Serialization Reuse
further extends the lineage cache by supporting serialized bytes from Federated
Responses and reusing them if the same response is sent multiple times to save the
time from redundantly serializing the content of the response.

In conclusion, as the �eld of federated learning expands rashly, MuTeFL o�ers the
possibility for deployment with long-running, server-like federated workers and for
applications with multiple coordinators. Our conducted experiments show the feasi-
bility as well as the robustness of a MuTeFL system. Furthermore, we demonstrated
in the experiments that the introduced optimizations are useful. However, there
still exist many opportunities for further development and optimization of MuTeFL,
for instance an extension of the broadcast communication to avoid unnecessary
transmissions, or a dynamic adjustment of the used parallelism on the worker
depending on its overall workload.
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J. Konečný, S. Mazzocchi, B. McMahan, T. Van Overveldt, D. Petrou, D. Ramage, and
J. Roselander. Towards Federated Learning at Scale: System Design. MLSys, Palo Alto,
CA, USA, 2019.

[13] T. S. Brisimi, R. Chen, T. Mela, A. Olshevsky, I. C. Paschalidis, and W. Shi. Federated
learning of predictive models from federated electronic health records. International
Journal of Medical Informatics, 112:59–67, 2018.

[14] C. Buil-Aranda, M. Arenas, and O. Corcho. Semantics and optimization of the sparql
1.1 federation extension. In G. Antoniou, M. Grobelnik, E. Simperl, B. Parsia, D. Plex-
ousakis, P. De Leenheer, and J. Pan, editors, �e Semantic Web: Research and Applica-

tions, pages 1–15, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[15] M. Chen, R. Mathews, T. Y. Ouyang, and F. Beaufays. Federated learning of out-of-
vocabulary words. ArXiv, abs/1903.10635, 2019.

[16] K. Cheng, T. Fan, Y. Jin, Y. Liu, T. Chen, and Q. Yang. Secureboost: A lossless federated
learning framework. IEEE Intelligent Systems, 36:87–98, 2021.

[17] E. Diao, J. Ding, and V. Tarokh. Hetero�: Computation and communication e�cient
federated learning for heterogeneous clients. ArXiv, abs/2010.01264, 2021.

[18] K. Dooley and I. Brown. Cisco IOS Cookbook: Field-Tested Solutions to Cisco Router

Problems. Cookbooks (O’Reilly). O’Reilly Media, 2006.

[19] K.-H. Drechsler and M. P. Stadel. A solution to a problem with morel and renvoise’s
“global optimization by suppression of partial redundancies”. ACM Trans. Program.

Lang. Syst., 10(4):635–640, oct 1988.

[20] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in
private data analysis. In Proceedings of the �ird Conference on�eory of Cryptography,
TCC’06, page 265–284, Berlin, Heidelberg, 2006. Springer-Verlag.

49



Bibliography

[21] C. Dwork and A. Roth. �e algorithmic foundations of di�erential privacy. Found.
Trends �eor. Comput. Sci., 9(3–4):211–407, aug 2014.

[22] K. M. Endris. Federated query processing over heterogeneous data sources in a
semantic data lake. 2020.

[23] K. M. Endris, M. Galkin, I. Lytra, M. N. Mami, M.-E. Vidal, and S. Auer. �erying

Interlinked Data by Bridging RDF Molecule Templates, pages 1–42. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2018.

[24] K. M. Endris, P. D. Rohde, M.-E. Vidal, and S. Auer. Ontario: Federated query processing
against a semantic data lake. In DEXA, 2019.

[25] V. Gadepally, P. Chen, J. Duggan, A. Elmore, B. Haynes, J. Kepner, S. Madden, T. Ma�-
son, and M. Stonebraker. �e bigdawg polystore system and architecture. In 2016

IEEE High Performance Extreme Computing Conference (HPEC), pages 1–6, 2016.

[26] B. Goetz, T. Peierls, J. Bloch, J. Bowbeer, D. Lea, and D. Holmes. Java Concurrency in

Practice. Addison-Wesley, 2006.

[27] A. Hard, K. Rao, R. Mathews, S. Ramaswamy, F. Beaufays, S. Augenstein, H. Eichner,
C. Kiddon, and D. Ramage. Federated learning for mobile keyboard prediction, 2018.

[28] M. Hausenblas and J. Nadeau. Apache drill: Interactive ad-hoc analysis at scale. Big
data, 1 2:100–4, 2013.

[29] D. Heimbigner and D. McLeod. A federated architecture for information management.
ACM Trans. Inf. Syst., 3(3):253–278, jul 1985.

[30] E. Hesamifard, H. Takabi, M. Ghasemi, and C. Jones. Privacy-preserving machine
learning in cloud. In Proceedings of the 2017 on Cloud Computing Security Work-

shop, CCSW ’17, page 39–43, New York, NY, USA, 2017. Association for Computing
Machinery.

[31] S. P. Karimireddy, S. Kale, M. Mohri, S. J. Reddi, S. U. Stich, and A. T. Suresh. Sca�old:
Stochastic controlled averaging for federated learning. In ICML, 2020.

[32] B. Kolev, P. Valduriez, C. Bondiombouy, R. Jiménez-Peris, R. Pau, and J. Pereira.
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