TU

Grazm

David Weissteiner

Decentralized Federated Learning:
Framework Design, Communication Efficiency,
and Dynamic Synchronization

MASTER’S THESIS
to achieve the university degree of
Master of Science

Master’s degree programme: Computer Science

submitted to

Graz University of Technology

Supervisor

Andreas Triigler, Priv.-Doz. Mag. Dr.rer.nat
Know Center Research GmbH and University of Graz

Graz, 12 2025

Abstract

Federated Learning enables collaborative machine learning in distributed data environ-
ments without consolidation of raw data. In Centralized Federated Learning, devices
share updates to the model parameters with a central server that aggregates them and
redistributes the aggregated state. However, the central server poses a single point of
failure and a major communication bottleneck. Decentralized Federated Learning (DFL)
overcomes these problems by eliminating the central role and distributing the responsi-
bilities to individual devices (actors). In this decentralized setting, communication is no
longer centered on one point, allowing actors to communicate arbitrarily with their peers.
The amplified possibility of network links and potential device limitations, however,
raises the challenge of communication efficiency. In particular in resource-constrained
environments, heavy communication workloads slow down the entire system, sometimes
even rendering the application infeasible due to bandwidth limitations. In this thesis, we
approach the challenge of communication efficiency in DFL. We start by outlining the
fundamentals of DFL to clarify the general paradigm and identify the key challenges.
Finding that a DFL system consists of numerous components, we recognize the difficulty
of comparing different methods of the individual components with each other. Therefore,
we implemented MoDeFL, a Modular Decentralized Federated Learning framework to
facilitate the evaluation of DFL methods and to foster their comparability. MoDeFL
aims to enable complete configuration and independent interchangeability of individual
component methods. The implementation of a multitude of communication optimiza-
tion methods and the support of communication-relevant evaluation metrics in MoDeFL
has sparked our interest in methods for communication efficiency. In response, we sur-
vey the DFL literature with a particular focus on communication efficiency. Beyond
establishing a taxonomy for the various communication-efficient techniques in DFL, this
survey reveals the topic of dynamic synchronization among the underexplored research
directions in DFL. In light of this research gap, we design Gradient Thresholding, a novel
synchronization algorithm to reduce communication cost while preventing actors from
diverging. This algorithm is able to detect divergent actors without the need for addi-
tional communication and triggers the synchronization process accordingly. Thus, Gra-
dient Thresholding reduces communication cost by omitting exchanges of model updates
between actors. Our experiments demonstrate the superiority of Gradient Thresholding
over baselines and further illustrate its concept.

Acknowledgments

Academic Guidance I would like to express my deepest appreciation to all those who
have supported me throughout the process of preparing this thesis. I am particularly
grateful to the following people, without whom I could not have undertaken this journey:

e Andreas Triigler for supervising this thesis and guiding my academic path.

e Lea Demelius for her support with the survey paper and for repeatedly reminding
me of the scientific value.

e Roman Kern for providing immediate clarifications on spontaneous inquiries re-
garding scientific and academic procedures.

e Hussain Hussain for advices and discussions on scientific practices and graphs.

e Andreas Ofner for his support in improving and refining the visualizations.

Funding This work was supported by the “PRO’k’RESS” project (grant No. 60155996)
and partly by the “QUICHE” project (grant No. 54741739), both funded by the Aus-
trian Research Promotion Agency (FFG). A visit to the ELSA Workshop on Privacy-
Preserving Machine Learning was reimbursed by the project European Lighthouse on
Safe and Secure AT (ELSA; funded by the European Union; project grant No. 101070617)
through the ELSA PhD & Postdoc Mobility Programme.

Employment The work on this thesis was conducted as part of my employment at
Know Center Research GmbH. Know Center Research GmbH is a COMET compe-
tence center that is financed by the Austrian Federal Ministry of Innovation, Mobil-
ity, and Infrastructure (BMIMI), the Austrian Federal Ministry of Economy, Energy,
and Tourism (BMWET), the Province of Styria, the Steirische Wirtschaftsforderungs-
gesellschaft m.b.H. (SFG), the Vienna business agency, and the Standortagentur Tirol.
The COMET programme is managed by the Austrian Research Promotion Agency FFG.

Artificial Intelligence (Al) Support We acknowledge the use of the following AT tools in
the writing process of this thesis for support on spelling correction and stylistic revision:
DeepL Translate (https://www.deepl.com/en/translator), Grammarly (https://
www . grammarly.com/, Perplexity (https://www.perplexity.ai/)), and Writefull for
Overleaf (https://www.writefull.com/writefull-for-overleaf).

https://www.deepl.com/en/translator
https://www.grammarly.com/
https://www.grammarly.com/
https://www.perplexity.ai/
https://www.writefull.com/writefull-for-overleaf

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to TUGRAZonline is
identical to the present master’s thesis.

Date, Signature

Contents

(1. Introductionl 7
[2. Decentralized Federated Learning: Fundamentals| 10
[2.1. Background| 10
[2.1.1. Centralized Federated Learning| 10

[2.2. Paradigm| 11
[2.3. Challenges|. 12
[2.4. Application Scenarios] 14
[3. Modular Decentralized Federated Learning Framework: System Design| 17
B.1. Introduction|. L L 17
B.2. Abstractionsl 18
B2T Actorl 18
B22 Tnitiatord 18
8.2.3. Model Update] 19
B3 Datal 19
[3.3.1. Data Loading| 19
[3.3.2. Data Partitioningl. 20
BA DModell 21
3.4.1. Model Builder Interfacel o 0oL 22
8.4.2. Model Interfacel oL 22
8.4.3. Model Serialization|. oo 23
[3.4.4. Local Training] 23
3.5, Model Parameters and Gradient] 23
[3.5.1. Representation| oo 24
8.5.2. DSerialization|. L oo 24
[3.50.3. Aggregation|. L 25
B.6. Network Communication]. 26
[3.6.1. Network Topology| 26
[3.6.2. Inter-node Communicationl 26
13.6.3. Model Update Market| 27
[3.6.4. Communication Optimization| 29
B.7 Execution Phased 30
3.7.1. Initialization Phasel. oL 30
8.7.2. Training Phase| 0000 30
B.7.3. Evaluation Phasel 31

3.8. Configuration| L 31
[8.8.1. Connectivity] 31
[3.8.2. Configuration File| 31
3.9. Conclusions| 34

[4. Communication Efficiency in Decentralized Federated Learning: A Survey| 35

4.1, Introduction|. L L 35
4.1.1. Related Surveys| 35

4.1.2. Contributions and Organization|. 37

|4.2. Communication-influencing Components| 38
4.2.1. Model Aggregation| oL 39

[4.2.2. Synchronization Method|o 000 45

4.2.3. Network Topology| 49

[4.3. Communication Optimization Techniques| 52
4.3.1. Compression| e 52

4.3.2. Local Computation|. 99

|4.3.3. Partial Device Participation| Y

4.4. Communication Efficiency of DFL Approaches| 99
|4.4.1. Collection I: Full Device Participation| 59

|4.4.2. Collection II: Dynamic Number of Local Updates|. 61

4.4.3. Collection III: Perfect Parameter Transmissionl 63

|4.4.4. Collection IV: Sparsification for Model Compression| 64

A5, Discussionl e 66
[5. Dynamic Synchronization Rule: Gradient Thresholding] 69
B.I Tntroductionl. o o 69
[5.2. Background, Challenges, and Related Workl 70
[p.2.1. Challenges| 70

0.2.2. Related Workl.o 70

b.3. Methodology| 71
[5.3.1. Threshold Region|. 72

[5.3.2. Algorithm| oo 75

b.4. Experiments|. 79
[5.4.1. Experimental Setup| 0oL 79

5.4.2. Baseline Comparison| 81

5.4.3. Threshold Distancel. L . 86

[5.4.4. Parameter Space Illustration| 89

[5.4.5. Variability Test| oo 92

(5.5, Discussion and Future Worklo o000 oo 95
6. Conclusions| 97
Bi1b orap 98
A. Appendix 112
|A.1. Learning Rate Grid Search|, 112
|A.2. Choice of Sensitivity Parameter| 114
[A.3. Baseline Comparison| 116
[A.4. Threshold Distancel o 122
[A.5. Variability Test| 126

1. Introduction

The Machine Learning paradigm Federated Learning (FL) has rapidly gained popularity
since its inception in 2016 [1]. The properties of data locality and data privacy render
FL particularly suitable for numerous distributed optimization applications. However,
traditional FL relies on a parameter server architecture and, thus, on a central entity.
Since this central server comprises a single point of failure and a great communication
bottleneck, the FL paradigm of Decentralized Federated Learning (DFL) has been in-
troduced. In the present thesis, we approach the challenge of communication efficiency
in DFL, starting with the general DFL paradigm towards a novel method for reducing
the communication cost in DFL. The following paragraphs outline the main chapters of
this thesis.

Decentralized Federated Learning improves the robustness and scalability of tradi-
tional FL paradigms such as Centralized Federated Learning (CFL). Therefore, DFL
has gained increasing popularity both in research and in industry. Although DFL over-
comes certain limitations encountered in CFL, there still exist major challenges. The
change in setting compared to CFL demands that these challenges be approached from
a different perspective. In Chapter [2, we define the DFL paradigm and outline the
main components of the system. We outline the key challenges in DFL research and
present approaches from the literature that address these challenges. We then provide
an overview of common application scenarios and their respective prevailing challenges.
This chapter offers a high-level overview of DFL and related research, serving as an
introduction to the research field of DFL.

To address the numerous challenges and trade-offs in DFL, applications typically com-
bine various techniques of individual components. These components include, for exam-
ple, the method for aggregating model parameters, the network topology, the local opti-
mization step at the actor, etc. Evaluations of newly proposed methods for these com-
ponents are usually conducted on a dedicated simulation platform and compared with
selected baselines. However, the experimental results obtained in a custom framework
impede the direct comparability of findings among different methods. We implemented
a Modular Decentralized Federated Learning framework (MoDeFL) to facilitate exper-
iments on different methods in a common framework. MoDeFL separates components
into distinct modules that can be configured independently of each other in terms of
the method applied and its hyper-parameters. Furthermore, it allows simple integration
of novel techniques within these modules. Thus, MoDeFL provides a modular and cus-
tomizable framework for the experimental comparison of different DFL techniques in a
common environment. We elaborate on the system design of MoDeFL in Chapter

DFL tries to eliminate the communication bottleneck and the single point of failure
found in CFL. However, the challenge of communication efficiency in DFL persists due
to the amplified number of possible network links, and due to systems constrained in
their network resources. Despite efforts already invested in improving communication
efficiency, the existing literature lacks a comprehensive overview of communication as-

pects in DFL. To fill this gap, we survey recent publications with a particular focus
on communication efficiency in Chapter {4}, explicitly addressing the communication cost
of key DFL constituents. We establish a taxonomy of essential DFL components that
influence communication by identifying classes of strategies and linking them to imple-
mentations in the current literature. Next, we examine popular techniques to optimize
the communication cost in DFL and categorize these methods into sub-classes. Taking
these components and optimization techniques into account, we then review recent pub-
lications in terms of communication efficiency and summarize their experimental results
to assess the communication overhead. This survey provides an examination and cate-
gorization of key communication aspects in DFL, which is valuable for both researchers
and practitioners engaged in resource-constrained distributed optimization.

Mutual exchange and incorporation of model parameter updates by actors is cru-
cial to enable collaborative training and ensure that actors optimize for the common
global objective in DFL. However, frequent synchronization of model updates increases
the communication cost, as model updates are exchanged over the network. Therefore,
improved synchronization algorithms are needed to optimize the trade-off between con-
vergence and communication efficiency. In Chapter 5 we design Gradient Thresholding,
a novel synchronization rule to reduce communication cost in DFL while preventing
different actors from diverging. Based on the observation that actors only require syn-
chronization if their model parameters diverge from each other, we construct a threshold
region in the parameter space, defining the area in which actors can update their model
parameters without the need for synchronization. Exceeding this threshold region in-
dicates that the respective actor might diverge, triggering the synchronization of all
actors. In the experiments, we demonstrate the superiority of Gradient Thresholding
over selected baselines and support the concept with empirical illustrations.

Contributions Our contributions to the scientific community include the following;:

e We implemented MoDeFL, a novel DFL framework to promote scientific experi-
mentation with individual DFL methods. In this work, we share the system design
of MoDeFL, providing valuable considerations for the modular implementation of
DFL components and their consolidation into a complete system. Furthermore,
we share the implementation of MoDeFL publicly on GitHubﬂ

o We synthesize and analyze the current state of DFL research with regard to com-
munication efficiency. We establish a taxonomy of DFL methods, unveil the impact
of different methodological classes on communication, and provide detailed insights
on actual implementations in recent publications, as well as discussions about the
interaction of communication efficiency with other research challenges in DFL. In
addition to being included in the present thesis, this item has been submitted for
publication as a survey paper and is currently under review [2].

e We propose Gradient Thresholding, a novel synchronization rule to optimize the
trade-off between communication efficiency and performance. We explain the
methodology of Gradient Thresholding and provide a detailed description of the
algorithm. We present the results of extensive experiments in which we confirm
the superiority of Gradient Thresholding over baselines, demonstrate the concept
of Gradient Thresholding in an experimental environment, and investigate its sen-

'MoDeFL GitHub repository: https://github.com/ywcb00/MoDeFL/tree/v0.1.1

https://github.com/ywcb00/MoDeFL/tree/v0.1.1

sitivity to certain attributes and hyperparameters. The implementation of the
algorithm and our experiments is publicly available on GitHuHﬂ

Structure The chapters of this thesis are structured in the following way: Chapter [2]
elaborates on the fundamentals of DFL; Chapter [3| provides the system design of our
implemented DFL framework MoDeFL; Chapter 4| comprises the survey on communica-
tion efficiency in DFL; and Chapter 5 introduces our novel synchronization rule Gradient
Thresholding.

Publication and Author Contribution Chapter [4] and parts of Chapter [2] have been
submitted for publication to the journal ‘Artificial Intelligence Review’ and are currently
undergoing peer review [2]. David Weissteiner is the main author of the manuscript.
Lea Demelius co-authored this work by contributing to the conceptualization, writing of
privacy-related content, reviewing, and editing. Andreas Triigler co-authored this work
by contributing to the conceptualization, reviewing, editing, and supervision.

2Gradient Thresholding GitHub repository: https://github.com/ywcb00/GradientThresholding/
tree/v0.1.1

https://github.com/ywcb00/GradientThresholding/tree/v0.1.1
https://github.com/ywcb00/GradientThresholding/tree/v0.1.1

2. Decentralized Federated Learning:
Fundamentals

The expanding field of machine learning (ML), with its constant desire for access to more
data, is drawing increasing attention to data privacy considerations. The privacy con-
straints and regulations that arise from these considerations often prevent data transfer
from edge devices or enterprise locations to a central location where traditional ML is
performed. Therefore, Federated Learning (FL) has been proposed to overcome these
restrictions without violating privacy constraints [1].

FL quickly acquired a wide range of applications, becoming relevant in various dis-
ciplines. However, the traditional paradigm of Centralized Federated Learning (CFL)
faces limitations and weaknesses in certain applications due to its dependence on a cen-
tral entity. Therefore, the paradigm of Decentralized Federated Learning (DFL) emerged
to address these shortcomings. In this chapter, we elaborate on the fundamentals of De-
centralized Federated Learning, including the general paradigm, the research challenges,
and popular application scenarios.

2.1. Background

2.1.1. Centralized Federated Learning

CFL—as the primary variant of FL—enables model training at a centralized node (server)
on decentralized data from multiple client devices (federated workers) with privacy con-
straints. This is achieved by utilizing the computing resources of the respective fed-
erated workers to compute pre-aggregates from the data, which do not allow for the
recreation of the source data. Subsequently, the federated workers send their individual
pre-aggregates to the centralized node (server), where they are aggregated and finalized
to a global model, which is then returned to the federated workers (see Figure [2.14)).
Thus, CFL addresses concerns about privacy, ownership, and locality of data [3].

Research in the field of CFL focuses mainly on four central challenges [4], [5]:

1. Security and Privacy: Although FL addresses some privacy concerns, research
has shown that model updates can still reveal sensitive information about the
underlying training data [6]-[8]. Therefore, CFL is often combined with other
privacy-enhancing technologies, for example, differential privacy [9] or homomor-
phic encryption [10], [11]. In addition, security challenges arise, such as availability
and integrity [12]. The central server represents a single point of failure, making
it an attractive target for attacks.

2. Data Heterogeneity: Data partitions violate the assumptions about independent
and identically distributed (I.I.D.) data in distributed optimization. For that rea-
son, traditional CFL methods face the challenge of poor convergence on hetero-

10

. JPrivate Local/Global > Aggregation > Model ... Global
Data @ Model - Engine Update)Update

Client 1 Actor 1

(a) Centralized Federated Learning (b) Decentralized Federated Learning

Figure 2.1.: Hllustration of system architectures; in Centralized Federated Learning (Fig-
ure [2.1a)), clients train their local model on private data and send model
updates to the server which aggregates them into one global model update
and distributes it to the clients; in Decentralized Federated Learning (Fig-
ure [2.1b)), actors train their model on private data, transmit model updates
to neighboring actors (arbitrary connections here), and aggregate received
model updates to their local model.

geneous data. The majority of the existing work on preventing such convergence
issues is based on techniques from data augmentation, client selection, regulariza-
tion, meta-learning, and transfer learning .

3. System Heterogeneity: Federated workers often differ in their computing, commu-
nication, and storage resources as well as in their general availability. To mitigate
the problems that arise from heterogeneous client resources, asynchronous CFL
and semi-asynchronous CFL have been proposed .

4. Commumnication Bottleneck: All federated workers send their model updates to
the same central server. Current approaches to reducing communication cost fo-
cus mainly on partial client participation, local updating, and compression tech-
niques f. Furthermore, the paradigm of decentralized FL—on which we
focus in the present work—aims to overcome the central communication bottle-
neck.

2.2. Paradigm

DFL is a variant of Federated Learning that enables devices to train collaborative ML
models without centralized coordination. In the literature, DFL is also referred to as
peer-to-peer FL (P2P FL), gossip FL, or distributed FL. Contrary to CFL, there is
no distinction between the server and the clients in DFL. During DFL model training,

11

actors share the same responsibilities of exchanging updates to model parameters with
their respective neighbors and incorporating information from the received updates into
the training process (depicted in Figure . That way, DFL eliminates the need for a
central entity and, thus, removes the single point of failure and the major communication
bottleneck arising from the server in CFL.

Although the high-level objective of DFL remains similar to CFL—namely, training
ML models in distributed environments subject to privacy constraints—, eliminating
the central coordination entity entails some key conceptual changes. Due to the absence
of a single point of communication, DFL requires dedicated strategies to handle the
communication of model parameter updates between neighboring actors. In addition,
every actor has to aggregate the updates from its neighbors autonomously. However, the
neighborhood does not necessarily include all other actors, but only a subset. Therefore,
we have to consider model aggregation with a limited set of model parameter updates
in DFL.

Besides the absence of a central coordination entity, the system prerequisites in DFL
are similar to CFL: Multiple devices with computing resources and private data are
connected over the network. Based on these prerequisites, we can set up a DFL system
which is characterized by three core components:

1. Learning units to enable model training of actors using their local data.

2. Inter-node communication to exchange updates to model parameters between neigh-
boring actors.

3. Aggregation engine to incorporate received updates to model parameters into the
learning process.

Together, these components represent the three stages that comprise DFL: (1) Local
updating, (2) model update exchange, and (3) model aggregation. During training, the
sequence of these stages is executed iteratively, with one pass through all three stages
referred to as a communication round. Within these three segments, it is possible to
implement additional techniques to optimize system behavior and overcome existing
challenges.

2.3. Challenges

Research in the field of DFL involves many of the same core challenges as CFL. However,
due to the difference in setting, we need to address these challenges from a different
perspective. The following paragraphs elaborate on four key challenges in DFL.

Communication Efficiency Although DFL overcomes the central communication bot-
tleneck of CFL, its distributed setting poses additional challenges in communication.
Due to the absence of a single point of communication, actors must exchange model
updates with their peers. As an implication, actors typically communicate with multiple
other actors concurrently. Hence, DFL experiences a high total amount of communi-
cation through the network. Additionally, actor devices are rarely dedicated servers
with high bandwidth, and often exhibit varying bandwidths among each other due to
their geo-spatial distribution. It is therefore likely to face bandwidth limitations. Fur-
thermore, network communication is considerably time-consuming, which is particularly

12

important for time-critical applications. These aspects emphasize the challenge of com-
munication efficiency and justify active research conducted on communication-efficient
methods for DFL. We elaborate on techniques to address this challenge in Chapter [4]

Security and Privacy Although DFL eliminates server-related threats (e.g., single point
of failure), it inherits all other security and privacy challenges of CFL, and often ampli-
fies the respective risks due to lack of trust and the higher complexity of peer-to-peer
communication [18]. Key threats include: (1) node failures or dropouts, (2) malicious
actors (including model poisoning attacks), and (3) information leakage (including infer-
ence attacks on private data). The likelihood of node failures and dropouts is increased
due to diverse device capabilities and network conditions, requiring robust fault-tolerant
solutions that avoid model version inconsistency. Enforcing trust and validating nodes
is also more challenging without a central server, leading to the adoption of crypto-
graphic methods and blockchain technologies to authenticate participants and ensure
data integrity. Poisoning attacks are a major concern in FL, as malicious nodes can
inject manipulated model updates into the system to degrade performance or intro-
duce backdoors. Without a central aggregator, detecting such poisoned updates is more
difficult since each node only observes a subset of updates (with exemption of fully-
connected networks). Apart from robust aggregation rules and verification of nodes,
anomaly detection is applied to filter out malicious updates (see e.g., [19]). To protect
against information leakage, DFL can be combined with privacy-enhancing technologies
such as multi-party computation (MPC), differential privacy (DP) and homomorphic
encryption (HE), though doing so is generally more challenging than in CFL due to its
decentralized peer-to-peer architecture [18]. Multi-party computation [20] is employed
to enable participants to jointly compute aggregates without revealing their individual
model updates (see for example [21]). Differential privacy [22], [23] is widely used to pre-
vent inference of individual data points from model updates or from the trained model
itself. In DFL, the most prominent approach is local DP, where each node adds carefully
calibrated noise to its model updates before sharing them with peers. Although well-
aligned with decentralized systems, local DP often leads to significant loss of accuracy.
To mitigate this, researchers have proposed a novel DP notion called network DP that
leverages the properties of DFL to amplify privacy guarantees [24], |25]. Homomorphic
encryption enables participants to perform computations on encrypted model updates.
While HE is a prominent approach in CFL, its deployment in DFL is more challenging
due to the difficulty of coordinating key management, calling for adaptions of standard
HE such as multi-key HE (see e.g., [26]).

Data Heterogeneity Similarly to CFL, DFL faces the challenge of heterogeneous data
distributions between actors, leading to performance degradation and convergence is-
sues. The approaches to tackle this challenge are divided into two differing objectives:
(1) Global convergence or (2) personalized models. Approaches with the goal of global
convergence continue to aggregate diverging models at a higher level to reach conver-
gence of the globally aggregated model. To achieve this, Wang et al. [27] incorporate
synthetic data generation to locally re-balance training datasets. In [28], on the other
hand, the authors utilize the techniques of gradient push and neighbor selection to en-
hance global performance on heterogeneous data. Additionally, several new or modified
aggregation schemes evolved to address this challenge, such as model fusion through

13

a model knowledge transfer algorithm [29], self-knowledge distillation [30], a localized
primal-dual method [31], and the incorporation of synthetic data from other actors [32].
Personalized models (also called customized models), in contrast, encourage actors to
learn different (i.e., personalized) models while still benefiting from the common basis
among the individual models. Some existing approaches tackle this objective by intro-
ducing a penalty in the objective function [33], by re-weighting model updates based on
their similarity to the individual local models [34], or by employing personalized adaptive
masks to customize sparse local models [35].

System Heterogeneity Due to the heterogeneity of devices in computing resources and
connectivity, the participating actors differ in (1) computation time to perform their local
update, (2) communication reliability due to interrupted connections, and (3) network
latency due to differing bandwidths. Therefore, the DFL system encounters problems of
stragglers (i.e., slow devices) that slow down the global learning process. Asynchronous
training processes help to overcome this problem by continuing the training without
waiting for the other actors—ignoring stragglers in the system and eliminating respec-
tive idle times (see Section [36]-]38]. Besides asynchronous DFL, the challenge of
system heterogeneity is also addressed by semi-synchronized strategies, for instance, by
allowing actors to continue their local training until the slowest actor completes its local
update [39]. However, with both the asynchronous and the semi-synchronous methods,
the issue of stale (i.e., outdated) model updates arises, since actors learn at different
rates. On top of asynchronous training, Cao et al. [36] propose a dynamic adjustment
of local training steps with probability-based neighbor selection to further optimize the
learning process with heterogeneous devices. Alternatively, in [37], the authors imple-
ment asynchronous training in combination with a model selection strategy that is based
on reinforcement learning and dynamic weighting of neighbor models. Apart from asyn-
chronous DFL, research also addresses system heterogeneity in synchronous systems.
In [40], the authors explicitly address unreliable communication by enabling the ag-
gregation of partially received models while dynamically optimizing the mixing weights
according to the reliability of the individual network link. Similarly to approaches in
the asynchronous case, Liao et al. [41] employ heterogeneity-aware methods to control
the amount of local update steps and to select neighbors in synchronous DFL.

Note that all previous challenges entail the cross-cutting challenge of maintaining
model consistency and accelerating convergence within this distributed setting.

2.4. Application Scenarios

DFL emerges as a useful tool for various applications, thanks to its great scalability
and privacy-preserving characteristic. Among the most popular application scenarios
are healthcare [42]-[45], Internet of Things (IoT) [46]-[51], satellite networks [52]—[56],
and vehicles [57]-[64].

Healthcare While ML shows great potential for reducing human error in healthcare,
traditional ML techniques prevent collaboration between institutions due to privacy con-
cerns. FL emerges as a viable solution by enabling collaborative ML without sharing

14

raw data. Nevertheless, FL still faces security and privacy threats. In CFL, the cen-
tral server has to serve as a trusted third party, which is difficult to find when several
institutions are involved. DFL does not include a central server, allowing healthcare in-
stitutions to collaborate on a common optimization problem without relying on a single
entity. The geo-spatial distribution between healthcare institutions promotes optimiz-
ing communication efficiency to overcome the burden of long communication times. The
sensitive nature of data in healthcare applications underlines the importance of address-
ing the privacy challenge [43]-[45] to provide privacy guarantees and thus ensure that
data remain undisclosed to other parties. In addition to DFL among institutions, the
growing field of the Internet of Medical Things in healthcare is drawing increasing at-
tention toward DFL on mobile and wearable devices. Due to varying computing and
communication resources of these devices, the need arises to consider the challenge of
system heterogeneity—alongside privacy and communication efficiency.

Internet of Things (loT) The increasing importance of IoT as well as Artificial In-
telligence led to the field of Artificial Intelligence of Things (AloT). In AloT, various
IoT devices empowered with Artificial Intelligence interact with each other to solve a
common objective. FL enables AloT in large-scale, data privacy preserving scenarios.
As the communication resources of IoT devices can be limited, constant communication
with the central server in CFL creates a major bottleneck. Therefore, DFL emerges as
a promising paradigm for AloT applications. Given the typically dense connectivity of
IoT networks, the DFL system comprises a multitude of communication links. Since ex-
tensive communication over a vast number of links would slow down the entire network,
communication still needs to be optimized—either by communicating only over a frac-
tion of available links or by reducing the size of communicated information. Therefore,
the challenge of communication efficiency arises in IoT applications along with the two
aforementioned challenges. DFL applications in IoT are confronted with a wide variety
of devices that show different system characteristics, accentuating the challenge of sys-
tem heterogeneity [46], [50]. Since these devices also differ in their data acquisition, the
challenge of data heterogeneity becomes evident [46], [49], [51].

Satellite Networks Low Earth Orbit satellites have received increasing attention re-
cently, partly due to their significant role in research on the sixth generation mobile net-
work (6G). Recent advances in satellite networks draw growing interest toward arising
opportunities for analyzing satellite sensor data using ML techniques. Since, for exam-
ple, transferring satellite imagery data to a ground server would likely exceed bandwidth
limitations due to the high data volume, FL offers a promising solution to avoid large
data transfers. Furthermore, to prevent dependence on communication with a central
server, which often suffers from intermittent connectivity in such scenarios, DFL emerges
as a promising paradigm. Nonetheless, DFL applications in satellite networks face the
situation of highly sporadic, irregular connectivity [52] and energy restrictions [53] in
general. Here, reducing communication is crucial to complete the exchange of model
updates among actors within a given time frame, as well as to minimize the energy con-
sumption of wireless communication. Due to differences in cameras and sensors, satellite
DFL applications also face the challenge of data heterogeneity [53], [55], [56].

15

Vehicles Traditional ML in vehicular networks encounters problems of privacy, limited
communication, and restricted energy consumption. DFL emerges as a promising av-
enue to enable collaborative training of ML models in this setting. While ’vehicles’ is
a broad term, recent literature includes applications in unmanned aerial vehicles [58],
[60], [61], [63], road vehicles [57], [62], and autonomous underwater vehicles [59]. These
applications face sporadic and irregular connectivity due to the consistent movement
of vehicles—similar to applications in satellite networks. For that reason, optimizing
communication efficiency is important to leverage times of stable connectivity most ef-
ficiently. Alongside the challenge of communication efficiency, DFL in vehicles faces
the challenge of privacy and security, particularly in military applications involving un-
manned aerial vehicles [58].

16

3. Modular Decentralized Federated
Learning Framework: System Design

3.1. Introduction

The architecture of a DFL framework comprises numerous system components, each of
which offers several strategies. These components can be categorized by their main re-
sponsibility in the DFL process, including data loading, network communication, model
training, and aggregation of model parameters. The category of network communication,
for instance, comprises the protocol used to transmit data over network, the network
topology, and the listening service with the buffer for incoming messages, as well as
potential optimization techniques such as compression and partial device participation.

Novel methods in DFL research are typically evaluated in a custom implementation
tailored to their needs. However, the broad landscape of components and their strategies
often leads to ambiguity in the experimental setup, as not all components are clearly
specified. Furthermore, DFL approaches differ in the strategies of their components,
hindering the comparison of the experimental results between different publications.
These two aspects complicate the implementation of baseline comparisons with related
approaches. This motivates us to implement MoDeFL, a modular DFL framework in
which each module corresponds to a specific component. These modules implement
individual strategies for the corresponding components, allowing us to specify the desired
strategy under test without modifying other modules. This design thus facilitates the
experimental comparison of different strategies for a specific component within the same
system configuration.

In this chapter, we describe the high-level system design of MoDeFL. We start by
defining the abstractions used throughout the chapter as well as in the implementation
of the framework in Section[3.2] We proceed by describing the loading and partitioning of
data (Section as well as the construction of the ML model to perform local training
(Section. Following this, we elaborate on the handling of the model parameters and
gradients in MoDeFL in Section including their representation, serialization, and
aggregation. We then focus on network communication in Section encompassing the
network topology, the communication between actors, and the management of received
network messages, as well as some techniques to optimize communication in DFL. After
discussing all these constituents, we then provide a general view on the execution of the
entire learning procedure in Section and guide through available configurations in
Section The implementation of MoDeFL is publicly available on GitHuH]

'MoDeFL GitHub repository: https://github.com/ywcb00/MoDeFL/tree/v0.1.1

17

https://github.com/ywcb00/MoDeFL/tree/v0.1.1

3.2. Abstractions

The key constituents of a learning procedure in MoDeFL are the Initiator process re-
sponsible for system initialization, the actors that perform the actual training, and the
model updates exchanged between actors to enable collaboration. Here, we outline these
three abstractions to clarify what they refer to and what they entail.

3.2.1. Actor

The actor in MoDeFL represents the binding of private data, a local ML model, compu-
tation resources, and network resources. In a real-world deployment, an actor could be,
for instance, a smartphone with location data (i.e., private data) that is connected to a
wireless router. During the training phase (see Section , the actors are responsible
for performing three essential tasks:

1. Local Training: The actors leverage their computing resources to train the local
model on their respective private data (see Section |3.4.4]).

2. Update Exchange: The actors exchange their updated model state (i.e., the model
update; Section [3.2.3)) over the network.

3. Aggregation: Actors aggregate the received model updates and update their local
model accordingly (see Section [3.5.3)).

By performing these three tasks repetitively, actors collaborate in training the ML model.

In MoDeFL, each actor is started as a stand-alone process which constantly listens
for network messages from its respective neighboring actors. It is therefore possible to
deploy actors on different machines, spatially separated from each other but connected
over the network. Furthermore, MoDeFL allows for the deployment of an arbitrary
number of actors. Apart from the Initiator (see Section , the actors are the only
participants in our DFL system.

3.2.2. Initiator

Before starting the training procedure, the actors have to be initialized in order to
collaborate on the global optimization problem. This initialization comprises informing
an actor about his identity in the system (e.g., its public network address), setting
up the network topology, setting the seed for reproducibility, specifying the dataset
to be used, communicating which strategies are applied, and initializing the model in
terms of model architecture, optimizer, and initial model weights. For this purpose,
MoDeFL spawns a dedicated process (i.e., the Initiator) at system startup to carry out
the initialization of the actors. The Initiator must show a network connection to all
the actors, as it coordinates the initializations individually through network messages.
More detailed information on the entailed network communication and the initialization
phase is given in Section and Section [3.7.1] respectively. Although the Initiator
operates as a central node in the system, it does not contradict the decentralization of the
DFL paradigm, since it only participates in the initialization phase. Thus, the Initiator
terminates before the actual training phase begins, when all actors are initialized with
the correct attributes.

18

3.2.3. Model Update

The model update (also called the model parameter update) refers to the information
about the local enhancement of an actor’s local model. It comprises the network message
that is sent from one actor to the neighboring actors in each communication round
(i.e., in each global epoch). Accordingly, each actor receives several model updates in
each communication round, aggregates them, and incorporates the aggregation into the
training. The representation of the model update depends on the overall DFL strategy;
It can consist, for instance, of the complete set of model parameters, a gradient, or the
difference of the local model parameters to some common reference (i.e., a model delta).
In addition to this update of the local model, MoDeFL allows the use of aggregation
weights in the model updates to weight the impact of individual actors when aggregating
the received model updates. We further elaborate on the exchange of model updates in

Section

3.3. Data

MoDeFL focuses on supervised learning tasks and, therefore, supports data records in the
format of (X,Y) tuples with X being the input features and Y being the output labels.
Consequently, the term dataset refers to a collection of such data records. During the
training phase (see, each actor trains the model on its own local dataset. This local
dataset is either an independent dataset that has always resided with the corresponding
actor (as in a real-world scenario), or a partition of a single, complete dataset that was
partitioned and distributed to the actors (the simulated scenario; see [3.3.2). In the
following subsections, we describe how a dataset can be loaded in MoDeFL and how it
is partitioned to simulate the decentralization of data among actors.

3.3.1. Data Loading

MoDeFL provides the class interface IDataset to consolidate the heterogeneous land-
scape of data sources into a common representation. Implementing this interface ensures
that datasets can be processed consistently within the framework. For this purpose,
the IDataset interface specifies the class attributes train, val, and test to store the
datasets for training, validation, and testing, respectively. The abstract method load ()
is responsible for loading the datasets and assigning them to the corresponding class
attributes.

To add a new dataset to the DFL framework, we create a separate class that imple-
ments the IDataset interface, reflecting the desired dataset. Accordingly, we implement
the corresponding load() method. Since we implement this method for each dataset
individually, there are no restrictions on the way we load the data. The only require-
ment on the load() method is to supply the three datasets (i.e., train, validation, and
test) in the format of TensorFlow [65] datasets. This means that we can either load the
data as a TensorFlow dataset directly or in any other format, which is then converted
into a TensorFlow dataset. Thus, MoDeFL enables various options for data loading, for
instance, by using the TensorFlow Datasets (TFDS) collection [66] or by loading local
files from disk.

19

3.3.2. Data Partitioning

Real-world DFL applications train an ML model on decentralized data that reside on
multiple actors. Here, data on a specific actor is considered a data partition from
the full dataset (i.e., all data partitions consolidated). Research experiments on DFL
often simulate decentralized data by partitioning a single, large dataset into several
partitions and distributing them to individual actors. This enables better control over the
characteristics of the data partitions. Moreover, it allows for comparisons to traditional
(i.e., centralized) ML methods and opens the possibility of comparing different levels of
heterogeneity across the data partitions in the experiments.

In MoDeFL, the FedDataset class manages the partitioning of a given dataset into
data partitions to simulate decentralized data. Omnce the complete dataset has been
loaded as described in Section we can instantiate the FedDataset class and pass
the dataset to its construct() method. Subsequently, the dataset is partitioned into
the same number of partitions as there are actors in the system, using the specified
partitioning schemeﬂ MoDeFL supports the following partitioning schemes built-in:

e Range: Divide the dataset into the desired number of connected partitions, pre-
serving the order of the data records (Figure [3.1a)).

e Random: Assign each data record randomly to a partition (Figure [3.1b]).

e Round-Robin: Assign data records to partitions sequentially in a cyclic manner
(Figure |3.1c]).
e Dirichlet: Allocate a proportion of data records of each label (applicable only for
discrete responses) to each partition according to the Dirichlet distribution (see
e.g., [68]; Figure (3.1d]).
Further partitioning schemes can be easily added to MoDeFL by creating a new class
method for partitioning within the FedDataset class. The requirements for such a
partitioning method are to take a TensorFlow dataset and return the specified number
of partitions as a list of TensorFlow Datasets.

2The partitioning scheme defines the way in which data records are divided into distinct partitions [67]

20

Data Partition 1 Data Partition 1
1D Label ID Label
Full Dataset Record 1 A Full Dataset Record 4 A
Record 2 B Record 6 B
ID Label R 43 B 1D Label R 48 A
ecort
Record 1 A Record 1 A ceon
Record 2 B Data Partition 2 Record 2 B Data Partition 2
Record 3 B ID Label Record 3 B D Label
Record 4 A Record 4 A Record 4 A Record 1 A
Record 5 C —< [Record 5 C Record 5 C Record 3 B
Record 6 B Record 6 B Record 6 B Record 7 C
R d7 >COT
ecor c Data Partition 3 Record 7 ¢ Data Partition 3
Record 8 A Record 8 A
ID Label D Label
Record 7 C Record 2 B
Record 8 A Record 5 C
(a) Range (b) Random
Data Partition 1 Data Partition 1
1D Label 1D Label
Full Dataset Record | A Full Dataset Record 4 A
Record 4 A Record 5 C
ID Label ID Label
Record 7 C Record 7 C
Record 1 A Record 1 A
Record 2 B Data Partition 2 Record 2 B Data Partition 2
Record 3 B D Label Record 3 B D Label
Record 4 A Record 2 B Record 4 A Record 2 B
Record 5 C »| Record 5 C Record 5 C Record 3 B
Record 6 B Record 8 A Record 6 B / » Record 6 B
Record 7 ¢ Data Partition 3 Record 7 ¢ Data Partition 3
Record 8 A Record 8 A
ID Label ID Label
Record 3 B Record 2 A
Record 6 B Record 5 A
(¢) Round-Robin (d) Dirichlet

Figure 3.1.: Built-in partitioning schemes in MoDeFL: ‘Range’ partitioning (Figure
preserves the order of the records from the original dataset across and within
the partitions; ‘Random’ partitioning (Figure randomly assigns the
records to equally sized partitions; ‘Round-Robin’ (Figure circulates
the partitions to assign the records sequentially; ‘Dirichlet’ partitioning (Fig-
ure assigns the records based on their label to introduce a specific level
of heterogeneity between partitions.

3.4. Model

The model constitutes the core part of the DFL system, whose objective is to solve the
respective optimization task. It consists of a fixed model architecture with trainable
parameters, which we intend to improve by training on the respective training data.
In MoDeFL, the model is replicated on every actor. Thus, we do not consider the
decentralized view when explaining the model in the following subsections, since only
the model parameters are aggregated decentralized but the model itself is replicated.
Instead, we describe the construction, handling, serialization, and training of the model

21

from a local perspective. Note that the model parameters are discussed separately with
a decentralized view in Section [3.5

3.4.1. Model Builder Interface

The class interface IModelBuilder in MoDeFL serves as a template for specifying the
model architecture. Every definition of a model architecture requires an individual model
builder class which is an instance of IModelBuilder. This class contains the definition of
the model architecture together with the method buildModel () to build the model and
return the corresponding object. In addition, the model builder class specifies model-
related properties such as the default learning rate, the loss function, and evaluation
metrics.

To define a new model architecture, we create a model builder class that imple-
ments the IModelBuilder interface. In this class, we define the buildModel () method
to instantiate the underlying model object. Furthermore, we implement the methods
getLoss () and getMetrics() which return the functions to calculate the loss and eval-
uation metrics, respectively. We also set the learning rate as a class member in the
constructor. Note that MoDeFL currently supports Keras [69] models for the under-
lying model object. Additional support for arbitrary types of models can be added
by implementing the respective abstractions from the model interface discussed in Sec-

tion 3.4.21

3.4.2. Model Interface

A model class in MoDeFL serves as a container for the underlying model object, specify-
ing generic methods for various types of underlying model. The class interface IModel,
which must be implemented by all model classes, defines the following abstract methods:

e fit(data): Perform a training step of the model on the given data.
e predict(data): Return forecasts for given data.

e evaluate(data): Evaluate the model using given data and return a dictionary of
the metrics specified in the respective model builder (see Section [3.4.1)).

Unlike the model builder, the model class does not depend on the model architecture
but on the type of the underlying model. For underlying model objects of the Keras
model type, for instance, the KerasModel class implements the three methods defined
in IModel. Therefore, the model class consolidates the training functionality of an
underlying model object to three general methods, creating a common representation
among all types of models in MoDeFL.

Support for arbitrary types of underlying model objects can be added by creating a
new model class that implements the IModel interface. Note that the model builder
has to construct the correct type of underlying model object to match the model class.
Implementing the three common methods for model training allows for direct integra-
tion into MoDeFL. To add support for PyTorch [70] models, for example, we create a
new model class PyTorchModel that inherits from the IModel interface. Subsequently,
we implement the three methods fit(data), predict(data), and evaluate(data),
which essentially translate the calls to the corresponding functionalities of the under-
lying PyTorch model. To eventually use the PyTorchModel class, we have to utilize a

22

model builder that constructs an underlying PyTorch model object. This model object
gets wrapped into an instance of PyTorchModel, which then provides the accessibility
required for MoDeFL.

3.4.3. Model Serialization

Actors in DFL require common initialization in terms of model and network charac-
teristics before starting the training procedure, as mentioned in Section This
initialization can be achieved either by starting all actors with the same initialization
or by initializing the actors after startup from a central node. MoDeFL supports the
initialization of the model architecture and the optimizer over network by the Initia-
tor. To achieve this, both the configuration of model architecture and the configuration
of the optimizer are serialized to their byte representation. Subsequently, the Initiator
transmits these configurations to all actors in the DFL system during the initialization
phase (see Section . The actors then initialize their model according to the re-
ceived configurations, resulting in the same initial model architecture and optimizer on
all actors.

3.4.4. Local Training

In MoDeFL, every actor holds a local ML model that is wrapped in an instance of
the respective model class (see Section [3.4.2)). During local training, actors enhance
their local models by performing one or multiple rounds of training on their local data.
This is done by calling the fit(data) method of the model class, which then conducts
the training and updates the parameters of the local model. The exact fitting process
is therefore defined by the implementation of the model class. In the built-in model
class KerasModel, for instance, the fit(data) method executes the fit() method of
the underlying Keras model object to train the model and update its parameter in one
call. In addition to this basic method fit(data), the KerasModel class also provides
the method fitGradient (data) to train the model, update the model parameters, and
return the gradient of the training process, as well as the method computeGradient ()
to solely obtain the next gradient without advancing the model parameters. Thereby, it
creates the possibility to apply various local training strategies by calling or overriding
the respective methods.

3.5. Model Parameters and Gradient

The model parameters and gradients differ among ML libraries in terms of their repre-
sentation and usage. To support the use of arbitrary ML libraries in MoDeFL, we create
custom data structures for model parameters and gradients with dedicated methods for
modifying, combining, and serializing. These data structures inherit from the common
base class HeterogeneousArray which defines basic abstract methods and fundamental
functionality such as abstract serialization methods and essential linear algebra opera-
tions. In the following subsections, we elaborate on (1) the storing and representation
of our custom parameters object, (2) the serialization of model parameters for network
transmission, and (3) the modification and aggregation of model parameters.

23

3.5.1. Representation

The HeterogeneousArray is an abstract class that serves as a common base class for all
data structures used to store model parameters and gradients (in this section commonly
referred to as parameters) in MoDeFL. We provide support for storing the parameters as
both dense and sparse arrays, using the built-in classes HeterogeneousDenseArray and
HeterogeneousSparseArray, respectively. The HeterogeneousArray stores parameters
as a list of either Numpy [71] arrays in the dense case or sparse [72] arrays in the sparse
case, along with some meta—dataﬂ These arrays represent, for instance, the layer-wise
parameters of a feed-forward neural network. On top of these underlying structures, the
classes HeterogeneousDenseArray and HeterogeneousSparseArray implement meth-
ods for binary operations including addition, subtraction, multiplication, division, and
comparison, as well as unary operations for taking the minimum, taking the maximum,
and element-wise rounding down the values. Furthermore, they provide functionality
to convert between dense and sparse representations. Through all these methods, the
HeterogeneousArray classes enable simple yet complete operation for our application.

3.5.2. Serialization

In order to include the parameters in the model update (see Section for exchange
among the actors, they require a serialized format. The methods serialize() and
deserialize() from the HeterogeneousArray classes perform the task of serializing
the parameters to a byte representation and deserializing them back to an instance of
HeterogeneousArray, respectively. To achieve this, we serialize the arrays stored inside
the HeterogeneousArray object into a list of their serialized representations. One seri-
alized representation is a consolidation of three entries for HeterogeneousDenseArray
objects and four entries for HeterogeneousSparseArray objects, as illustrated in Fig-
ure For both types, the last two entries of this consolidation contain the shape of
the array, converted to bytes using the Numpy tobytes() method, as well as the data
type of the array elements, encoded as a UTF-8 string. These two entries are required
for deserializing the parameters back to an object of type HeterogeneousArray. For
HeterogeneousDenseArray objects, the first entry in the serialized representation con-
tains the values of the array. For HeterogeneousSparseArray objects, on the other
hand, the first entry contains the coordinates of non-zero array elements and the second
entry holds the corresponding element values. In both cases, these arrays are converted
to a byte sequence using the Numpy method tobytes (). Thereby, we obtain a list of
serialized representations of the parameters. In addition, we append potential meta-
information about the parameters to this list, utilizing the library pickle |73] to convert
this information into a byte object. This general format allows the transmission of pa-
rameters to other actors over the network. To convert the parameters back to the type
of HeterogeneousArray, we iterate through the serialized list, converting each member
back to its original array type with the correct shape and data type. As a result, we
obtain the initial list of either Numpy arrays of sparse arrays, with which we instantiate
the HeterogeneousDenseArray or the HeterogeneousSparseArray, respectively.

3In the case of compressed parameters (see Section [3.6.4)), the HeterogeneousArray also contains meta-
information about its compressed state (e.g., quantization bins).

24

Heterogeneous Dense Array Heterogeneous Sparse Array
Array 1 Array 1
Array 3 Array 3
Array 4 Array 4
serialize() serialize()
Serialized List Serialized List
Al [Values [16 x 3 |float32 Al| Coordinates | Values [16 x 3 [float32
A2|Values| 6 x 2 |float32 A2| Coordinates | Values | 6 x 2 [float32
A3 | Values (10 x 4 |float32 A3| Coordinates | Values |10 x 4 |float32
A4 | Values | 4 x 4 |float32 A4 | Coordinates | Values | 4 x 4 |float32
(a) Dense (b) Sparse

Figure 3.2.: Exemplary model parameters with serialized representations, which is a list
containing the values, dimension, and datatype of each array from the source
representation. For sparse arrays (Figure , each list element addition-
ally holds the coordinates of the non-zero values.

3.5.3. Aggregation

The aggregation of model updates from several actors is essential in DFL to incorporate
the model enhancements from other actors into the learning process. Alongside the most
popular averaging of model parameters, there exist numerous aggregation strategies. The
static class AggregationUtils in MoDeFL the following built-in aggregation strategies:

e Averaging: Average of model parameters or gradients, optionally weighted by
specified aggregation weights.

e Consensus-based Federated Averaging: Extension of the averaging strategy pro-
posed by Savazzi et al. [74], which additionally weights received model updates by
a common parameter to control the consensus rate.

o (Consensus-based Federated Averaging with Gradient Exchange: Extension of Con-
sensus-based Federated Averaging, which appends a second stage where actors also
incorporate gradients computed from the aggregated model parameters on the data
from their neighboring actors [74].

e FedNova Average of normalized stochastic gradients proposed by Wang et al. |75],
in which the accumulated gradients are rescaled to eliminate inconsistencies in the
solution.

25

These methods accept our custom types of model parameters and gradients (see Sec-
tion, leveraging their built-in operational methods to compute aggregates. Support
for further aggregation strategies can easily be added by creating a new method inside
the AggregationUtils class.

3.6. Network Communication

The actors in DFL are individual devices that communicate over network links. There-
fore, each actor contains a network interface card (NIC) through which it is connected to
other actors. The set of actors that can be reached via an actor’s NIC is determined by
the network topology (see Section. To exchange information among each other, the
actors must follow a common protocol for inter-node communication (see Section [3.6.2).
Furthermore, actors require functionality to store and manage received network messages
(see Section , since model updates are not processed instantly upon receipt.

3.6.1. Network Topology

The network topology determines which actors are connected to each other in our DFL
system. In general, we allow for arbitrary, bidirectional network topologies in MoDeFL.
Nevertheless, the specified topology must comply with the other parts of the system.
For example, combining a ring topology, where each actor is connected to only two other
actors, with a partial device participation strategy (see Section7 which removes two
network links from each actor, would isolate each actor and is therefore incompatible.
Therefore, we must consider compatibility with the complete system when determining
the network topology. Note that MoDeFL can be easily extended to support directed
network topologies by storing the incoming and outgoing neighbors separately on each
actor. In MoDeFL, we can specify the network topology in the form of an adjacency
matrix, which is described in Section [3.8.1]

3.6.2. Inter-node Communication

The nodes in MoDeFL (i.e., the Initiator and the actors) communicate with each other
using the remote procedure call framework gRPC [76]. In gRPC, the interfaces are
defined using Protocol Buffers [77]—a data format to serialize structured data. Since
we can divide the communication in our DFL system into an initialization phase (see
Section and a training phase (see Section , we also define our interfaces in
two different services: the initialization service and the model update service. Although
the procedures must be strictly predefined for gRPC, our aim is to keep their definitions
as generic as possible to allow the implementation of a variety of DFL techniques. We
elaborate on the procedures in the following paragraphs.

Initialization Service The initialization service provides remote procedures to specify
the configuration and define the initial state of the actors. As explained in Section
MoDeFL spawns an initialization process (i.e., the Initiator) to initialize the individ-
ual actors before starting the training procedure. For that reason, each actor starts

26

an initialization service that is permanently listening for calls to its predefined remote
procedures. These initialization procedures comprise:

e InitIdentity tells the actor its public network address, its identifier among the
actors, the number of actors in the system, and its individual seed to initialize the
random generator.

e InitDataset specifies the dataset and the data partition to be loaded.

e InitModel transfers the serialized model to the actor and specifies the configura-
tion for the optimizer.

e InitModelParameters initializes the model parameters at the actor.
e InitStrategy specifies the methodological strategies to be applied.
e RegisterNeighbors informs the actor about its respective neighbors.

e StartLearning terminates the initialization service and starts the training proce-
dure.

The actor responds with an empty message as an acknowledgment of all calls to these
procedures. Using these remote procedures, we can initialize the entire DFL system
before starting the training procedure.

Model Update Service The model update service provides communication function-
ality during training. Once all actors have been initialized, the Initiator concludes the
initialization phase by calling the StartLearning procedure on all actors. Consequently,
each actor terminates the initialization service and starts the model update service. The
model update service then permanently listens for calls to its predefined remote proce-
dures, which include:

e TransferModelUpdate sends a model parameter update to the respective actor.

e EvaluateModel transfers the model parameters to the respective actor with the
request to evaluate these parameters on its local data and to return the evaluation
metrics.

e AllowTermination signals an actor that it will not receive any further calls from
the calling node.

Note that the TransferModelUpdate procedure enables the exchange of model updates
(e.g., model parameters, gradients) among actors and, hence, constitutes an essen-
tial piece of the DFL system. The EvaluateModel procedure enables the evaluation
of model parameters of an actor on the private data of its neighboring actor. The
AllowTermination procedure helps the actor terminate without prematurely closing the
connection to its neighbors. Together, these remote procedures offer the communication
ability to conduct the learning procedure in MoDeFL.

3.6.3. Model Update Market

The model update market acts as a buffer for received model updates and enables various
strategies for the consumption of model updates by the respective actor. Upon receiving
a model update, the actor places it directly in its model update market through the
putUpdate () method, where it is stored in a queue linked to the corresponding sender.
Hence, the model update market comprises one queue for each neighboring actor, con-

27

X-th Model Update from Actor A

AX

Model Update Market

Neighboring | Neighboring [Neighboring | Neighboring
Actor I Actor II Actor III Actor IV

I.1 II.1 I11.1 V.1
1.2 1.2 V.2
1.3 V.3

(a) Model Update Market

Available / min. one from each /
minimum k (k<9)
One from each M & B =L
get() | =1 1 =1 =1 get) | B2 12 12
get() | wait for actor III [£]2 £73 13
(b) One from each (d) Available / Minimum one from each / Min-

imum k (k <9)

One from each with timeout (2 sec.)
get) | X1 1 =1 =1 One from minimum percentage 75%

wait for 2 sec., then get() | E1 E01 E1 E1
B2 2 B2 get) | B2 2 =12

get() | wait for €13 or]2

get()

wait for 2 sec., then

get()

&3 =3 (e) One from minimum percentage

(¢) One from each with timeout

Figure 3.3.: Exemplary scenarios illustrating the strategies for retrieving model updates
from the market (Figure|3.3al) via multiple invocations of the get () method.

taining the respective model updates received. Leveraging this data structure, the model
update market provides the get () method to remove and return the model updates ac-
cording to a specified strategy (i.e., the synchronization strategy). MoDeFL supports
the following built-in strategies:

e One from each: Obtain one model update from each neighboring actor. Block if
necessary until one model update is available for each neighboring actor.

e Available: Obtain all model updates available at the time.

o Minimum one from each: Obtain all model updates available at the time, but at

28

least one from each neighboring actor. Block if necessary until one model update
is available for each neighboring actor.

e One from minimum percentage: Obtain one model update from at least a certain
percentage of neighboring actors. Block if necessary until the percentage of model
updates from neighboring actors is reached.

o Minimum k: Obtain all model updates available at the time, but at least &k in
total. Block if necessary until £ model updates are available.

e One from each with timeout: Obtain one model update from each neighboring
actor. Block if necessary until either one model update is available for each actor
or the timeout is reached.

These strategies determine the synchronization behavior of the DFL system; the strat-
egy “one from each”, for instance, refers to a strictly synchronized DFL system, whereas
the strategy “available” enables completely asynchronous execution of the actors, as it
does not include waiting times. Therefore, these strategies are also known as ‘synchro-
nization strategies’. To support additional strategies, we can extend the static class
ModelUpdateMarket in MoDeFL by the respective method for obtaining the model up-
dates.

3.6.4. Communication Optimization

Techniques for optimizing communication cost can be activated in addition to the re-
quired networking functionality that enable communication between the actors. Since
these optimization techniques are optional, they can also be completely deactivated
alongside the regular strategy options for modules in MoDeFL. Built-in communication
optimization modules in MoDeFL comprise compression techniques and partial device
participation strategies.

Compression Model updates in DFL are often compressed before being transferred
over the network to reduce communication cost. More specifically, each actor applies
lossy compression methods to the model parameters or gradient in a model update before
distributing the model update to its neighboring actors. The most prominent compres-
sion methods in DFL are quantization and sparsification. Quantization methods reduce
the number of bits required to represent the individual values of the model parameters
or gradient. Sparsification methods, on the other hand, convert the model parameters
or gradient into a sparse representation by introducing a large proportion of zero values,
thereby reducing the number of values to transmit. MoDeFL supports the following
built-in methods for quantization and sparsification:

e Probabilistic Quantization: Quantize the model parameters or gradient by proba-
bilistically rounding down or up to a pre-specified precision of the values (similar
to probabilistic quantization in Konecny et al. [78]).

o Layer-wise TopK Sparsification: Keep only the k highest values in each layer of
the model parameters or gradient; remove (i.e,. zero-out) the other values.

o Layer-wise Percentage Sparsification: Keep only a specified percentage of highest
values in each layer of the model parameters or gradient; remove the other values.

29

Partial Device Participation MoDeFL supports the communication optimization tech-
nique of partial device participation (PDP), which allows only a selected subset of neigh-
boring actors to participate in each round. Consequently, the model updates are broad-
cast only to the selected neighbors, while the other neighbors receive an empty update
message for synchronization purposes. MoDeFL currently provides one built-in PDP
strategy: Randomly selecting a predefined number of neighbors for the transmission of
model updates. However, the framework can be easily extended to support additional,
more sophisticated strategies.

3.7. Execution Phases

The learning procedure in MoDeFL consists of three conceptual phases: Initialization,
Training, and Evaluation. The initialization phase is managed by the Initiator (see
Section , as defined in the Initiator class. The training and evaluation phases,
on the other hand, are conducted by the actors and generally defined in a class that
inherits from the IDFLStrategy interface class, referred to as ‘learning strategy’. This
allows the implementation of different learning strategies, which can be selected by the
Initiator during the initialization.

3.7.1. Initialization Phase

The initialization phase revolves around initializing the attributes of the actors. First,
all actor processes, as well as the Initiator, are started on their respective sites. Once
all actors are running, the Initiator begins initializing the actors using the initialization
service described in Section[3.6.2] This initialization informs the actors about their iden-
tity, their dataset, the model architecture and optimizer, the initial model parameters,
the learning rate, the number of epochs, the general strategies to be used, and their
neighboring actors in the network topology. The actors subsequently load the specified
dataset and construct the model with the respective initial parameters. As soon as all
actors acknowledge the initialization, the Initiator instructs them to start the training
phase, and then terminates itself.

3.7.2. Training Phase

The training phase is started by the Initiator after the actors have been initialized and
comprises the actual training procedure of the DFL system. This includes training the
local model, exchanging model updates, and aggregating the received model updates.
To perform these steps, the following methods must be implemented by the respective
learning strategy class:

e fitLocal(): Train the local model on local data.
e broadcast(): Send the model update to neighboring actors.

e aggregate(): Incorporate received model updates into the local model parame-
ters.

The method performTraining() then orchestrates the iterative execution of these meth-
ods for the specified number of epochs. The IDFLStrategy interface class provides a

30

basic implementation of the performTraining() method, which can be overridden in
the respective learning strategy class to match the individual requirements.

3.7.3. Evaluation Phase

In the evaluation phase, the evaluation metrics are obtained using the current state of
the model parameters. Note that the evaluation can take place after completion of the
training phase, as well as in-between communication rounds during the training phase,
depending on the implementation of the learning strategy class. MoDeFL offers two
types of evaluation: Local evaluation and neighbor evaluation. With local evaluation
(the evaluate() method in IDFLStrategy), the model of an actor is evaluated on its
own local dataset. With neighbor evaluation (the evaluateNeighbors() method in
IDFLStrategy), on the other hand, the actor sends its model parameters to the neigh-
boring actors, requesting them for evaluation. The neighboring actors then evaluate
these model parameters using their respective dataset and return the resulting evalua-
tion metrics to the requesting actor. These evaluation metrics are eventually averaged,
representing the evaluation results on foreign data.

3.8. Configuration

MoDeFL aims to be fully configurable to facilitate experimentation. Therefore, both
the Initiator and the actors can be configured via command line arguments as well as
through a dedicated configuration file, described in Section [3.8.2] Besides these optional
configurations, which return to a default option when unspecified, the Initiator must be
supplied with the respective network configuration (i.e., network addresses of actors and
network links between actors), as outlined in Section [3.8.1]

3.8.1. Connectivity

To communicate with the actors, the Initiator requires knowledge about their network
addresses. Since these addresses cannot be inferred automatically, we have to provide the
Initiator with a list of the network addresses from the actors. This is done through a text
file that lists the addresses line by line. In addition to the addresses, the Initiator requires
knowledge about the network topology of the actors, as the Initiator is responsible to
inform the actors about their neighboring actors. Therefore, we provide the Initiator
with an adjacency matrix that defines which actors are connected to each other through
binary values at the respective position in the matrix. The rows and columns of the
adjacency matrix must follow the same order as the address file.

3.8.2. Configuration File

MoDeFL allows numerous configurations regarding the dataset, the local and global
learning process, and general characteristics of the system through a dedicated configu-
ration file in json format. The path to this file is provided as command line argument
--config=<path to_config> when starting the Initiator or the actors. Table lists
the configurations that are in common between the Initiator and the actors; Table

31

Argument ‘ Default value \ Description ‘

seed 13 Random seed for reproducibility
num_threads_server | # logical CPUs | Number of threads for the gRPC service
log_level DEBUG Logging level for the console output

Table 3.1.: Common configurations

’ Argument ‘ Default value ‘ Description
log performance_flag True Flag indicating whether to log training
and validation metrics or not
log communication_flag | True Flag indicating whether to log the data
volume transferred between actors
log dir ./log Path to the directory for storing log files

Table 3.2.: Actor configurations

shows the configurations for the Initiator; and Table outlines the actor-specific con-
figurations. All tables contain the name of the configuration, its default option, and
a brief description. Note that most of the Initiator’s configurations can also be speci-
fied in the actor’s configuration file, but these configurations are overwritten during the
initialization phase when the Initiator transmits its configurations to the actors.

32

Argument

Default value ‘

Description

dataset_id

Mnist

Dataset to be used for training

partitioning scheme

ROUND_ROBIN

Scheme for partitioning the dataset

partitioning alpha

2.5

Common value for the concentration
parameters of the Dirichlet partition-
ing scheme

addr_file ./addr.txt Path to the address file containing
the actor addresses

adj_file ./adj.txt Path to the adjacency matrix file
specifying the network topology

num_fed_epochs) Number of communication rounds to
be performed

num_local_epochs 1 Number of local training epochs in

every communication round

1r Model depen- | Learning rate applied for local train-
dent ing at the actors
1r_global Model depen- | Global learning rate considered in

dent

certain aggregation methods

learning_type

DFLv1

Learning strategy to perform

sync_strategy

ONE_FROM_EACH

Synchronization strategy for retriev-
ing the model updates from the mar-
ket

sync_strat_percentage 0.5 Percentage attribute for synchro-
nization strategies

sync_strat_amount 2 Amount attribute for synchroniza-
tion strategies

sync_strat_timeout 3 Timeout in seconds considered in
certain synchronization strategies

sync_strat_allowempty False Flag indicating whether to count an
empty update in the synchronization
strategy or not

compression_type NoneType Compression method applied to the
model updates

compression_k 100 Amount of non-zero values for spar-
sification methods

compression percentage | 0.2 Percentage of non-zero values for
sparsification methods

compression_precision | 8 Precision in bits for quantization
methods

pdp-strategy NoneStrategy | Strategy for partial device participa-
tion

pdp-k 2 Number of neighboring actors for

partial device participation

33

Table 3.3.: Initiator configurations

3.9. Conclusions

We have explained the design of the individual system modules in MoDeFL. Furthermore,
we have discussed possibilities for expanding the individual DFL components by addi-
tional strategies, demonstrating the extensibility of the modules in MoDeFL. We have
also described the execution of the training and outlined the configuration options. By
clearly separating individual DFL components into fully configurable modules, MoDeFL
facilitates the experimental comparison of DFL techniques. For this reason, and due to
the simple integration of additional techniques, MoDeFL fosters experimentation with
novel DFL approaches. MoDeFL already implements several common baselines for com-
paring experiments, which can be conveniently selected through the configuration. Be-
sides the integration of additional DFL techniques, which constitutes an ongoing task,
future work involves further simplification of the configuration options. Additionally,
MoDeFL would benefit from clear definitions of the resources available to each module.
This will clarify the general context for a specific module and, thus, further simplify the
integration of novel techniques.

34

4. Communication Efficiency in
Decentralized Federated Learning:
A Survey

4.1. Introduction

Although DFL tries to eliminate the communication bottleneck at the central node by
removing the server and outsourcing its responsibilities to the individual devices (ac-
tors), communication bottlenecks can still occur at the actors themselves. In the sim-
plest DFL strategy, the network consists of fully-connected actors, where each actor
sends its model update to every other actor. Because every actor must receive updates
from all peers, the communication bottleneck moves from the CFL server to each actor.
Hence, just eliminating the server does not suffice to resolve the communication bottle-
neck. Nevertheless, we can alleviate the communication bottleneck in DFL by reducing
communication cost through dedicated configurations of model aggregation techniques,
synchronization methods, and network topologies. In addition to these general DFL con-
figurations, we can apply techniques such as compression, local computing, and partial
device participation to further reduce communication overhead.

4.1.1. Related Surveys

The rapid growth of FL. and the increasing number of respective publications gave rise
to numerous surveys summarizing the advances. Although the majority of these sur-
veys focus on CFL, significant efforts have also been devoted to reviewing DFL, both
in addition to CFL [80]—[83] and exclusively [79], [84], [85]. In this context, the authors
in |79] analyze DFL in terms of federated architectures, network topologies, communi-
cation mechanisms, security and privacy approaches, and key performance indicators.
Furthermore, they explore existing optimization mechanisms of DFL and provide a list
of trends, lessons learned, and open challenges. In survey [80], the authors elaborate on
FL solutions that focus on network topologies for both CFL and DFL by analyzing their
advantages and disadvantages, and discuss the remaining challenges and future work for
applying FL in specific network topologies. Similarly, the authors of [81] survey CFL and
DFL approaches and classify the existing work based on their network topology. They
discuss the general techniques behind FL from the perspectives of theory and applica-
tion, and frame the current application problems—also providing the existing attack
scenarios and defense methods. In [82], the authors focus on synchronization strategies,
consolidation methods, and network topologies, assessing and contrasting the efficacy
and constraints of methodologies and providing insights for future progression. In [83],
the authors introduce a systematic and detailed perspective on DFL, including iteration
order, communication protocols, network topologies, paradigm proposals, and temporal

35

Survey Model Aggregation | Synchronization Method | Network Topology
(Section ’m (Section m (Section m

[79] ~ v v
- [80] X v v
81 v X X
82 X ~ v
183 % ~ N
84 X X ~
(85 x ~ ~
" Ours v v v

(a) Communication-influencing Components

Survey Compression | Local Computation | Partial Device Participation
(Section m (Section m (Section ’m‘)
(9] ~ X X
- [80] X X v
81 v X X
82 X X X
83 ~ X v
(84 ~ X v
85 v X ~
| Ours v v v

(b) Communication Optimization Techniques

Table 4.1.: Coverage of communication aspects for DFL constituents in existing surveys
on DFL; x: does not comprise communication; ~: mentions communication;
v': elaborates on communication.

variability. Moreover, they propose categorizations within this context, and they discuss
possible solutions and future research directions. The authors in [84] review existing
approaches for traditional and blockchain-based DFL, identify emerging challenges, and
discuss future research directions. In survey [85], the authors examine DFL approaches
that try to optimize performance and efficiency in terms of memory usage, communica-
tion cost, convergence under data heterogeneity, and computational effort. In addition,
they categorize the approaches based on their method to address system heterogeneity
and data heterogeneity, and the authors provide some application scenarios of DFL.

Existing reviews on DFL cover a significant share of recent approaches from the litera-
ture. Analogous to DFL approaches, some survey papers focus on certain challenges such
as security and privacy [79], [81], data heterogeneity [85], and system heterogeneity [85].
A fraction of surveys also discuss communication aspects for selected methodologies.
However, to the best of our knowledge, the current literature does not comprise a review
paper that specifically focuses on the communication cost in the DFL system. Table
provides an overview of the aspects that are addressed in terms of communication effi-
ciency by the individual survey papers.

36

4.1.2. Contributions and Organization

In this survey, we revisit DFL with a special focus on the open research challenge of com-
munication efficiency{l| and discuss the latest advances in this field. In contrast to existing
work, we explicitly elaborate on the communication efficiency of key system constituents
that characterize communication in the DFL infrastructure. Thus, we provide a guide-
line with important considerations for constructing a DFL system in bandwidth-limited
environments. To our knowledge, the current literature does not include surveys that
elaborate on the communication efficiency of the entire DFL system. An overview of ex-
isting surveys and their coverage of certain communication aspects is listed in Table
For the sake of focus and clarity, the scope of this survey was limited to non-blockchain
approaches for horizontal DFIEL Following an extensive search through DFL literature,
we selected 13 approaches based on their recency and relevance in terms of communica-
tion efficiency [29], [30], [37]-[39], [87]-[94].
Our key contributions are as follows:

e We review DFL approaches from the literature with a particular focus on commu-
nication cost.

e We identify three essential DFL components with a major impact on communica-
tion cost and discuss three popular techniques to optimize communication efficiency
in DFL approaches.

o We establish taxonomies within the three DFL components and within the three
optimization techniques, and unveil their impact on communication.

e We discuss the interplay of DFL methods in recent literature, reveal combinations
that have already been addressed by research, and summarize the experiments of
corresponding approaches.

We organize this survey in the following structure: In Section [4.2] we elaborate on
different implementations of essential components in DFL based on recent literature
and discuss their impact on communication efficiency; Section [4.3| reviews supplemen-
tary techniques to optimize communication cost in DFL and discusses their respective
impact; Section [4.4] analyzes common DFL approaches regarding the composition of
techniques from Section and Section to draw comparisons and to reveal combina-
tions covered by research, and summarizes the experiments of these approaches to assess
the communication efficiency; Section summarizes the insights from the previous
sections and discusses trade-offs between the challenge of communication efficiency and
other challenges in DFL.

! Communication efficiency refers to the minimized utilization of communication resources (e.g., band-
width, network links, etc.) required to maintain convergence, and is assessed based on communication
frequency, information transfer volume, and related metrics.

?In horizontal DFL, the individual datasets at the actors share the same feature space [86].

37

p
Communication-influencing Components]7

A 4 ¢ A 4

N
] Synchronization
[Model Aggregation [Method] [Network Topology]
J
I
v v v v v v v
Weightbed Increme.ntal [Synchronous] [Asynchronous] Fully- Ring Gl
Averaging Averaging v Connected
\ 4 \ 4 Csem:]i_ \ 4 v
Knowledge ADMM Synchronous Torus el
Transfer

Figure 4.1.: Taxonomy with the communication-influencing essential components of DFL
and their prevailing categories.

4.2. Communication-influencing Components

Communication efficiency in FL constitutes an ongoing research challenge. Albeit DFL
addresses the communication bottleneck of CFL, there still exists a high demand for fur-
ther improvements. In particular for systems with bandwidth limitations, exchanging
a massive amount of model updates induces a major bottleneck in the DFL infrastruc-
ture. Therefore, reducing the communication cost brings substantial advancement in
time performance.

In DFL, numerous system components determine the overall communication cost.
Therefore, when calculating the communication overhead, we have to consider the ques-
tion “What gets communicated with whom and how often?”. This question is composed
of three aspects: What, with whom, and how often. The “what” (i.e., the information
transfer volume) is mainly influenced by the model aggregation technique (Section ,
as it decides the type of exchanged information (e.g., model parameters, gradient, etc.).
The network topology (Section affects the “with whom” (i.e., the network links
for exchange) by specifying the neighborhood of an actor. Lastly, the question of “how
often” (i.e., the communication frequency) is influenced by the synchronization method
(Section , as it determines the system behavior in terms of waiting times and po-
tential interruptions of communication rounds. Given these considerations, we identify
the communication-influencing DFL components to be the Model Aggregation (Sec-
tion @, the Synchronization Method (Section , and the Network Topology
(Section @) In this section, we discuss the communication-influencing components
in more detail by categorizing common implementations and summarizing the way and
the extent to which they influence communication. The components are depicted in
Figure with their respective subcategories. Furthermore, Table links the indi-
vidual publications from common approaches to the corresponding subcategory of their
implementation.

38

Reference Aggfsgjgion Synﬁ?ﬁ?}fgtlon Network Topology
[87] wAvg Synchronous Fully-connected, Ring, Torus
[29] KT/KD Synchronous Fully-connected
188] wAvg Synchronous Random
189] wAvg Synchronous Fully-connected
190] wAvg Synchronous Fully-connected, Random, Other
[91] wAvg Synchronous N/A
[39] ADMM Semi-synchronous Random
[92] wAvg Synchronous Fully-connected, Ring
[93] wAvg Synchronous Torus
[37] wAvg Asynchronous Other
194] incAvg Synchronous Other
138] wAvg Asynchronous Random
130] wAvg Synchronous Grid, Hybrid

Table 4.2.: Publications discussed in this survey (“Reference”) with the corresponding
categories of the communication-influencing components: Model Aggregation
(“wAvg”: weighted averaging; “incAvg”: incremental averaging; “ADMM?”:
alternating direction method of multipliers; “KT/KD”: knowledge trans-
fer /distillation), Synchronization Method, and Network Topology.

4.2.1. Model Aggregation

The model aggregation scheme is a central part of DFL, as it defines the method for
incorporating received model parameter updates into the training process. As a core
part of DFL, it plays an important role in communication efficiency, since it determines
the type of information that actors need to exchange. In other words, it specifies the
content of a model parameter update. Such an update could, for instance, contain
one (or several) complete set(s) of model parameters, a gradient to previous models,
or reduced model parameters, possibly combined with additional information about the
model state. For that reason, the selection of an appropriate model aggregation scheme
is crucial to achieve communication efficiency, as well as to ensure the convergence of
the overall training.

Based on DFL literature, we focus on four general categories of model aggregation
that are prominent in DFL: (1) weighted model averaging (wAvg), (2) incremental
model averaging (incAvg), (3) alternating direction method of multipliers (ADMM),
and (4) knowledge transfer and distillation. The authors in [83] introduce two learning
paradigms that affect model aggregation: Continual and Aggregate. In Continual
(also called continual federated learning or incremental federated learning), the actor
resumes training directly on top of the previous actor’s model parameters. In the
Aggregate paradigm, on the other hand, the actor first aggregates several received
model updates and then progresses training based on the aggregated model parameters.
Since the Aggregate class covers a broad spectrum of aggregation techniques, we further
categorize the model aggregation methods into sub-classes. In our context, incAvg falls
into the Continual paradigm while the other three categories belong to the Aggregate
paradigm.

39

wAvg The most popular class of aggregation schemes in DFL is the class of wAvg
aggregation. As the name already suggests, strategies that follow the concept of wAvg
implement an average over the set of received model parameter updates to obtain an
aggregated state of parameter update in each round. Within this averaging process,
neighbor-specific weights determine the relative influence of the individual contributions
received from neighboring actors. Thanks to the ability to aggregate multiple updates,
we can parallelize the training of the individual actors. Equation shows the general
form of an aggregation step for wAvg schemes in epoch k at actor i. To obtain the
aggregated model my41;, actor ¢ averages the model parameter updates Ay ; of its
neighboring actors j € N, weighted by their respective mixing weight W; ;. Note that
with this notation, the set of neighboring actors N; also contains the actor i € N
and that the corresponding mixing weights sum up to Zje n; Wiy = 1. The model
parameter update Ay, ; refers to actor j’s locally updated model parameters, for instance,
by performing a local epoch of stochastic gradient descent (SGD). The simplicity of
wAvg schemes and their suitability for parameter aggregation led to the development of
numerous variants of wAvg-based aggregation schemes in DFL.

Miy1,i = Z (Wi j Ak ;) (4.1)
JEN;

The wAvg-based variants for DFL differ in three aspects: (1) the mixing weights W ;,
(2) the set of neighbors’ model updates considered for aggregation N C N, and (3)
the content of a transmitted model update, consisting of the locally updated parameters
Ay ; and potential supplementary information. We summarize the individual variants
of common approaches regarding these three aspects in Table [£.3]

The mixing weights determine the impact of the individual model updates in the
aggregation. The simplest strategy is to specify the mixing weights equally among
all actors, giving each actor the same magnitude of impact [30], [87], [89]. A slight
variation of this is to assign an individual weight to the aggregating actor while uniformly
distributing the weights of the neighboring actors, thus adjusting the influence of the
local model update separately [88]. Another strategy sets the mixing weights of the
individual actors proportional to their respective data cardinality, prioritizing the model
updates from actors with more data [93]. The choice of mixing weights does not directly
influence communication in DFL; however, strategies that accelerate convergence, for
example by setting the mixing weights according to network properties [91], [92] or
dynamically adjusting them during training to capture time-varying connectivity [38] or
model-specific behavior [37], [90], may reduce the number of required communication
rounds.

The selection of a subset of model updates N after they have been received
from the neighbors (i.e., model update selection) is rarely implemented in DFL, as it
only brings a small reduction in computational effort and usually the contribution of
all neighbors is valuable to some extent. However, the authors in [37] maintain a cache
of model parameter updates from previous epochs and include these updates in the
aggregation. They employ a model update selection technique based on reinforcement
learning to prevent the consideration of stale updates. Most DFL approaches, however,
leverage the optimization technique of partial device participation (Section {4.3.3) to
reduce the amount of model updates involved in training. In contrast to the model

40

update selection, partial device participation avoids the redundant transmission of model
updates by determining the subset of neighboring actors before the transmission step.
Hence, an actor transmits its model update only to a selected subset of neighboring
actors. Note that both the selection of model updates and the technique of partial
device participation can also be expressed in terms of the mixing weights by setting the
respective weight to 0. Since the selection of model updates occurs after they have been
received, this does not directly affect the communication efficiency.

The content of a model update, on the other hand, influences the communication
cost in DFL directly, as it determines the size of the transmitted message. The sim-
plest and most prominent approach is the transmission of the model parameters [30],
[37], [88]-[90], [92], [93]. Other approaches exchange differential model parameters (i.e.,
model deltas) among the neighbors that are based on a common reference [87], [91],
resulting in a generally smaller value range for the elements and, hence, yielding either
a reduction in the communicated size or an increase in precision at the same communi-
cation cost. In [38], the authors include a scalar weight (i.e., the push-sum weight [95])
in addition to the model parameters with each model update, which is then leveraged
to de-bias the local model. Beyond the model update, they communicate the training
loss and the local iteration index to all available neighbors—regardless of the neighbors
selected by partial device participation (see Section —to support the neighbor se-
lection in their implementation of partial device participation. The content of the model
update directly influences the communication cost, since it determines the size of the
communicated model update. Note that the communication between actors is not nec-
essarily limited to the model updates, as some DFL approaches communicate additional
information, either in the initialization phase [88], [90], [93] or in each communication
round [30], [38], [89], [92] as detailed in Table Also note that in the approaches of
references [88], [89], [92], the additional information is communicated between the actors
and a lightweight coordinatorﬂ to support their advanced training strategies from a cen-
tral perspective. However, since the lightweight coordinators are not directly engaged in
model aggregation, these approaches can still be considered decentralized, even though
they incorporate a central node.

incAvg For the case of incAvg aggregation, the model parameters are passed through
the network sequentially, with each actor locally optimizing the received parameters
before forwarding the enhanced model parameters to the next actor. Thus, the model
parameters travel through the network and undergo further optimization with each visit
of an actor. This type of traveling through the network is also known as a random
walk. During training, various states of the global model parameters are available in the
network, since the individual actors only receive the global state when it is their turn to
perform the local optimization step. In the local optimization step, the actor trains the
received model using its private data before sending the updated model parameters to
the next actor. The general formula for such a local optimization step on received model
parameters m,, using SGD at actor i is given in Equation @ where 7 is the learning
rate, f;(-,-) is the loss function of actor i, x; represents the private data on actor i, and
V is the differential operator.

When compared to DFL with wAvg, the incAvg strategy presents a different scenario.

3 A lightweight coordinator is a central node that does not perform model aggregation.

41

’ Reference \ Mixing Weights \ Update Selection \ Update Content

[37]

Equal None Estimated model delta

[38]

Equal (others) None (PDP) Model params.

[39)

Equal (both) None (PDP) Model params.

[90]

Trust-score (dynamic) None Model params.

[91]

Network topology None Model delta

192]

Degree (global) None (PDP) Model params.

193]

Data size None Model params.

37]

Staleness (dynamic) | RL-based (cached) Model params.

38]

Degree None (PDP) Model params., scalar

[30)

Equal None (PDP) Model params.

Table 4.3.

Table 4.4.

: Strategies of three fundamental aspects of wAvg-based model aggregation:

Basis for the specification of Mixing Weights (“both”: a total of two model
updates; “others”: different for the aggregating actor; “dynamic”: dynamic
re-weighting every round; “global”: consideration on a global scope instead
of the neighborhood), technique to perform Update Selection (“PDP”: imple-
menting Partial Device Participation (see Section to select a subset of
neighboring actors to consider; “cached”: selection of updates from a cache;
RL: reinforcement learning), and the Update Content (“params.”: parame-
ters) that is exchanged between the actors (model delta: difference in model
parameters compared to a common reference).

’ Reference ‘ Dir. ‘ Additional Communication ‘

[88] — | Matching decompositions, seed
[90] = | Data size, data variance, connectivity
[93] = | Data size

(a) Once for initialization.
’ Reference ‘ Dir. ‘ Additional Communication

— | Seed, mixing weights matrix, round index

— | Bandwidth, loss, accuracy

— | Set of neighbors, compression ratio

~— | Consensus distance, communication capacity

[89]

[92]

[38] = | Training loss, local iteration index
[30] = | Parameters of last layer

(b) Every communication round.

: Communicated information in addition to the model update content from

Table “Dir.” indicates the direction of information transmission (—
from coordinator to actors; «— from actors to coordinator; = among actors).

This is because it lacks computational parallelism, as only the currently visited actor
performs local training at any given time. The class of incAvg is thus closely related to
the field of continual learning and, consequently, faces many similar challenges as contin-
ual learning (e.g., catastrophic forgetting) [96]. Although the absence of computational
parallelism increases the total execution time, incAvg aggregation drastically reduces

42

the communication cost, as only one actor transmits the model parameters to another
actor in each round. In this context, Gupta et al. [94] propose a novel strategy for select-
ing the path through the network to achieve the best possible accuracy with the least
possible communication cost. More precisely, they consider all possible paths within a
distance threshold to the shortest path in the network and select the path that offers
the highest training accuracy. To do so, the connectivity and bandwidths of the entire
network must be known. In their experiments, the authors show a significant reduction
in communication cost while achieving similar accuracy as their baselines. In general,
incremental training of the collaborative model is a powerful method to significantly
reduce communication cost, but it is not suitable for time-critical applications.

mi = my — 1V fi(my, ;) (4.2)

ADMM ADMM is an algorithm to solve distributed convex optimization problems by
decomposing the original problem into smaller sub-problems. First introduced in the
1970s [97], this method combines the benefits of dual decomposition and Lagrangian
methods [98], thus allowing for a high degree of parallelization of the problem with
numerical stability [81]. Given its suitability for decentralized optimization, ADMM was
adopted by DFL. The general iterative updates for ADMM in a decentralized manner
are provided in reference |99], as written in Equation from the perspective of actor
i. Here, f;(-,-) denotes the local objective function, ¢ is the penalty parameter from the
augmented Lagrangian, N is the set of neighbors, mf is the local solution at iteration
k, and)\fﬂ are the local Lagrange multipliers. Similarly to Equation for incAvg, x;
represents the private data of actor ¢ and V is the differential operator. Note that the
neighboring actors exchange their model updates {mé“, Vj € N;} (i.e., the local solutions)
beforehand, as they are required for the update step. Also note that both the calculations
of mf“ and)\fﬂ rely only on local information from the respective actor and the model
updates of its neighbors, which means that the transmission of solely the model updates
is sufficient. In [39], the authors adopt ADMM to DFL in combination with techniques
of compression (Section , local computation (Section , and partial device
participation (Section . To reduce the computational burden of ADMM, they
implement the inexact alternating direction method of multipliers (1IADM) |100]. With
regard to communication, leveraging ADMM for model aggregation in DFL generates
the equivalent cost as wAvg in each round. This results from the fact that the local
solutions mf, which are exchanged with neighboring actors, have the same dimension
as the model parameters. Nevertheless, ADMM can solve non-smooth optimization
problems effectively and offers a high degree of scalability.

ML= N\E e [NG mE — Z m?
JEN;

-1
ml+! = (Vfi(mf,xi) + 20]M]I) A N|mf + ¢y mb— X5 (4.3)
JEN;

43

Knowledge Transfer and Knowledge Distillation The last class of model aggregation
techniques that we discuss in this section is based on knowledge transfer and knowledge
distillation. Knowledge distillation (also referred to as model distillation) is widely used
as an effective technique for transferring knowledge from a large, powerful neural network
(teacher model) to a smaller network (student model) by mimicking the teacher’s behav-
ior [101], [102]. Based on this idea of knowledge distillation, Zhang et al. |L03] propose
a strategy that enables multiple students with comparable models to learn to solve the
task concurrently and collaboratively, which is called mutual learning. To achieve this,
each student optimizes both the local loss and the loss from knowledge distillation with
other students. As a result, students engage in collaborative training, eliminating the
teacher role. In [29], the authors adopt the idea of mutual learning into DFL to address
the problem of client driftﬂ Their approach (named DefKT) distinguishes between two
roles for the participating devices: Sender and receiver. The task of a sender is to update
its local model and transmit the resulting model parameters to its assigned receiver de-
vice. Subsequently, the receiver device incorporates the received model parameters into
its local model by transferring the knowledge between these two models. This knowledge
transfer is performed iteratively on batches of data. Equation[d.4]presents the updates of
both the local model of the sender m, and the received model m,. in the [-th iteration of
knowledge transfer. Here, ns and 7, denote the learning rates of the knowledge transfer
update, B; denotes the I-th data batch, and P,; and P;; are the soft predictions (i.e., the
outputs of the model) obtained on the data batch B; under the respective model mg or
m,. The loss functions Losss(-) and Loss, () consist of two additive terms: (1) The gen-
eral, task-specific loss function evaluated on the soft predictions P,; and P;;, and (2) the
Kullback-Leibler divergence that quantifies the match of the two sets of soft predictions.
More detailed information on these loss functions can be found in reference [29]. It is
worth mentioning that, apart from iterating through the data batches, DefK'T employs
three different quantities of iterations: (1) The global number of epochs (i.e., communi-
cation rounds), (2) the number of local updating steps, and (3) the amount of training
passes for the knowledge transfer process, where each training pass iterates through all
data batches of the respective dataset at the actor. In terms of communication over-
head, DefKT restricts the transmission of model updates to a group of senders and an
equal-sized group of receivers in each communication round, both form subsets of the
entire community of devices. Consequently, they drastically limit the number of acti-
vated communication links. As this also relates to the optimization technique of partial
device participation, we further elaborate on the limitation of activated communication
links in Section The content of a model update in DefKT comprises the full set of
model parameters. Therefore, the communicated size per model update is comparable to
the general case of the other model aggregation strategies. Nevertheless, the technique
of knowledge transfer and the additional configurable parameters in DefKT (e.g., the
number of training passes of the knowledge transfer process) offer further possibilities
to increase communication efficiency by speeding up the convergence.

4Client drift denotes the phenomenon when collaborating participants train in different directions due
to data heterogeneity.

44

OLossg(ms, By, Pry)
omg
OLoss,(m,, By, Ps)
om,

ms =Ms — s

me = my — Ny (4.4)

With all of the model aggregation categories, the overall communication cost is indi-
rectly influenced by the convergence rate. Depending on the exact optimization prob-
lem and the dataset, certain model aggregation strategies increase the convergence rate,
thus reducing the number of communication rounds required to reach a certain accu-
racy. Since the number of communication rounds determines how often we perform the
exchange of model updates, it constitutes a major driver for the overall communication
cost. Apart from this, the model aggregation schemes also exhibit a direct effect on
the communication cost, as discussed in previous paragraphs. Important to note here is
that while the model aggregation class (wAvg, incAvg, ADMM, or Knowledge Transfer)
defines the general framework for the aggregation strategy and, therefore, determines
its baseline communication cost, specific implementations within a class may introduce
additional communication overhead. For example, a wAvg scheme that optimizes the
mixing weights based on statistics about the local training steps of the actors increases
the communication cost by including these statistics in the content of the transmitted
model update. To summarize, we have described the state-of-the-art categories of model
aggregation schemes to provide insight into the general framework in which their imple-
mentations operate, and we have discussed their general implications for communication
efficiency, outlining key differences in communication between the respective aggregation

types.

4.2.2. Synchronization Method

The synchronization method determines the behavior of the actors when exchanging
model updates. Essentially, it defines whether the actors wait for the model updates
from the other actors or continue the training process directly after sharing their model
updates. Since the respective synchronization method is an instrumental aspect of the
DFL system, it affects both the performance of the overall learning process and the
general operability of other techniques in the DFL system. Furthermore, different syn-
chronization methods entail different challenges, such as the challenge of stale model
updates and the challenge of stragglers. In terms of communication cost, the synchro-
nization method strongly influences the number of communicated model updates.

Following existing literature (see e.g., [79], [80], [82]), we distinguish between the cate-
gories of synchronous, asynchronous, and semi-synchronous DFL, as they provide a solid
separation regarding their main differences. We elaborate on the characteristics of these
three categories, put them in contrast, and discuss their impact on the communication
cost. An exemplary execution timeline of four actors in the DFL system is shown in
Figure to visualize and compare the respective behavior of the three synchronization
categories.

In synchronous DFL, all actors synchronize with each other directly after they per-
form local training. As a result, the model updates that are exchanged among the actors
all have the same level of progress, which simplifies the aggregation process. Due to its

45

TStart Time |?‘Synchronization Point [Local Training EZIdle Model Aggregation EZAborted Training

* [] ['] * 4 ;] E.]

A WZA T =) A 1355251) N S— - 5555 E— 55 N

B 17 /x [w —] E— 1222 E— 2 — B:}W :m —>

C 1 I y/j —> C T 1 > c:f :m =

D A [17 /,x > DY i 8 — N 1222 ES D1 ; [I 129{ >
(a) Synchronous (b) Asynchronous (¢) Semi-synchronous

Figure 4.2.: Exemplary execution timeline on four actors (A/B/C/D) for the three types
of synchronization methods. The synchronous scheme (Figure involves
idle times; the semi-synchronous scheme (Figure includes aborted
trainings; and the asynchronous scheme (Figure shows increased ag-
gregation times due to varying situations.

simplicity in aggregation and, thus, also in convergence proofs, the synchronous type
is the most popular category among the synchronization methods [29], [30], [87]-[94].
However, heterogeneous actors cause idle times in the learning process, since all actors
have to wait for the slowest actor in the system (i.e., the problem of stragglers). As
indicated in Figure faster actors wait for all other actors to complete local training
(purple bar) in an idle state (red bar). Only when all actors have completed the local
training will they exchange the model updates, aggregate them (orange bar), and con-
tinue with the next iteration (i.e., the next communication round). The point in time
when all actors have completed the local training is called the synchronization point. In
synchronous DFL, the communication is limited to a single exchange of model updates
per communication round, which occurs at the synchronization point. As the actors wait
for each other, they perform only one local training in each communication round, and,
hence, they share only a single model update with their neighbors. Note that even if we
perform multiple local epochs in the local training step using the optimization technique
of local computation (see Section , we obtain only one overall model update that
covers these local epochs. Thus, each actor is strictly limited to sending only one model
update to its neighbors in each communication round.

In contrast to synchronous DFL, actors in asynchronous DFL do not wait for other
actors to complete their training step. Instead, an actor directly sends the model up-
date to its neighboring actors after finishing the local training and continues with the
subsequent aggregation process. Hence, this model aggregation process does not wait
for any model updates from the neighboring actors but only involves the model updates
that are available at that time. To enable this asynchronous communication, every ac-
tor permanently listens for incoming model updates and stores them in a buffer until
it performs the model aggregation. The asynchronous scheme addresses the problem
of stragglers encountered in the synchronous scheme, yet it introduces additional chal-
lenges. First, the model aggregation method must allow for an arbitrary number of
model updates, since we cannot determine the time required for an actor to perform a
model update in advance. Second, the model aggregation must allow for multiple model
updates from the same neighboring actor. Finally, we have to consider the challenge
of stale model updates which adversely affect the optimization. Figure depicts the
execution timeline for the asynchronous scheme, clearly showing the elimination of idle

46

times that occur in the synchronous case. Note that we encode an overall increase in
the duration of model aggregation in Figure compared to synchronous DFL, which
is due to its higher complexity and the additional check for staleness of the model up-
dates. The actors in asynchronous DFL directly continue with the consecutive local
training step and the transmission of the successive model update after performing the
model aggregation. Model updates are therefore communicated at a higher frequency
among the actors than it is the case with the synchronous scheme (unless the overhead
in the duration for model aggregation exceeds the idle times from synchronous DFL).
As a result, faster actors share more model updates than slower actors within the same
time, causing asynchronous DFL to involve more communication than synchronous DFL.
Note, however, that asynchronous communication has the advantage of sending model
updates at different times, which prevents the actor from being flooded by a massive
amount of updates at once. Among the publications discussed in the present survey,
two approaches employ the asynchronous synchronization method [37], [38]. Similar to
the synchronous scheme, the concept of the asynchronous scheme is also strictly defined.
Nevertheless, differences in the approaches exist in their handling of surrounding chal-
lenges, such as the increase in complexity of convergence and the problem of staleness. In
this context, the authors of [38] provide a convergence analysis of their approach under
the heterogeneous scenario, assuming strongly convex functions. Liu et al. [37], on the
other hand, propose a dynamic, staleness-aware model aggregation method to address
the problem of stale model updates, which is further discussed in Section [4.2.1

The semi-synchronous method combines characteristics from the synchronous and
the asynchronous scheme. Similarly to the synchronous method, the semi-synchronous
scheme involves synchronization points on which all actors synchronize with each other
(i.e., perform model aggregation). In between two synchronization points, the actors do
not wait for each other after completing local training. Instead, they directly start
the next iteration of local training. Hence, there are no idle times with the semi-
synchronous method, just like in the asynchronous scheme. The key characteristic of
semi-synchronous DFL is that the actors abort the local training step when reaching a
synchronization point. Aborted trainings are colored in blue in Figure Although
aborting the local training step wastes computational effort, the benefit behind this con-
cept becomes apparent when multiple local training steps can be completed within one
synchronization period (i.e., the time between two synchronization points). As shown
in Figure actor D successfully performs multiple local training steps in-between
synchronization points, leveraging available computing resources that would be idle in
synchronous DFL. Variations of the semi-synchronous method differ in the determina-
tion of synchronization points. In Figure the synchronization points are determined
by the time required by the slowest actor to complete one local training. However, the
synchronization points can also depend, for instance, on a pre-specified duration, on the
fastest actor, or on more sophisticated evaluations among the actors (e.g., a metric of di-
vergence). Note the risk of confusing the semi-synchronous scheme with the synchronous
scheme when the technique of local computation (see Section with multiple local
updates is involved. The main difference is that the semi-synchronous scheme describes
the parallel execution of all participating actors, whereas local computation determines
the number of local updates performed before the model parameters are aggregated
with model updates from other actors—applicable with all synchronization methods.
The semi-synchronous scheme exhibits similarities to both the synchronous and the

47

asynchronous scheme. In terms of communication, the frequency of transmitted model
updates almost resembles the asynchronous method, since there are no waiting times.
The difference lies in the aborted training steps, which do not yield a model update.
Whether semi-synchronous synchronization exhibits a higher or lower communication
frequency than asynchronous DFL depends on both the heterogeneity of computing re-
sources between the actors and the time required for the model aggregation step. The
bandwidth bottleneck that arises in synchronous DFL due to receiving multiple updates
all at once also exists in the semi-synchronous scheme. This is due to the common syn-
chronization points, which lead to actors starting the training round simultaneously. As
an implication, actors are completing the round and communicating the updates concur-
rently, given that they have similar computing power. However, this is not the case with
heterogeneous computing resources at the actors. Semi-synchronous DFL particularly
addresses the challenge of stragglers, since slow actors do not prevent the other actors
from continuing their computations under the semi-synchronous scheme. Additionally,
the semi-synchronous method benefits from joint synchronization points, reducing the
complexity of convergence. In [39], the authors propose a variant of the semi-synchronous
scheme that combines key characteristics from both synchronous and asynchronous DFL,
called partial synchronization. Similarly to synchronous DFL, their variant comprises
waiting times. However, the actors only wait for a pre-specified minimum amount of
model updates. Slower actors are considered stragglers in that particular synchroniza-
tion round and, hence, are not included in the model aggregation. As a result, the actors
follow an asynchronous behavior throughout the synchronization periods. Due to the
presence of partial synchronization points and asynchronous behavior, the method of
partial synchronization belongs to the semi-synchronous synchronization methods.

To summarize, each of the three synchronization methods has considerable advantages
but also entails some drawbacks. The synchronous synchronization method creates a
more predictable environment regarding convergence of the overall learning process.
Synchronous communication, however, does not address the problem of stragglers in
the DFL system and is more susceptible to bandwidth bottlenecks. The asynchronous
synchronization methods, on the other hand, address the challenge of stragglers by
eliminating waiting times for the other actors. Instead of waiting for the others’ model
updates, an actor incorporates only available model updates and then directly continues
its execution, which drastically increases the complexity of theoretical convergence and,
thus, reduces the predictability of the overall learning process. Compared to synchronous
DFL, the asynchronous method increases the amount of model updates transmitted
between the actors while lowering the bandwidth bottleneck that arises from receiving
multiple updates at the same time. The semi-synchronous synchronization method tries
to combine the advantages of both the synchronous scheme and the asynchronous scheme
by allowing for asynchronous behavior within a framework that enforces synchronization
points to maintain the simplicity of model aggregation and convergence. This leads to
trade-offs between the benefits and drawbacks, since underlying concepts are mutually
exclusive. Therefore, variants of the semi-synchronous scheme try to optimize these
trade-offs.

48

oD
(a) Fully-connected (b) Ring (c) Grid (d) Torus

Figure 4.3.: Illustration of popular network topologies considered in DFL publications.
In the Fully-connected topology (Figure , all actors are interconnected;
in the Ring topology (Figure , each actor is connected to two neighbor-
ing actors, forming a ring; in the Grid topology (Figure , connections
form an evenly-spaced two-dimensional grid; and in the Torus topology (Fig-
ure , the grid topology is extended by connecting the actors beyond the
grid boundary to the other side.

4.2.3. Network Topology

As mentioned in Section [2.2] inter-node communication is a characterizing part of DFL.
To facilitate communication in the first place, we require network connectivity between
the actors. However, we cannot assume that all nodes are interconnected because of con-
nectivity limitations (e.g., absence of network links between some actors) and contractual
restrictions (e.g., no data contractﬂ established between two parties). In this context,
the network topology defines which actors are connected through a uni-directional or bi-
directional network link. Similar to topologies in network science, we represent network
topologies as adjacency matrices and visualize them as graphs. The most popular types
of network topologies considered in DFL comprise the fully-connected mesh topology,
the ring topology, the grid topology, and the torus topology, depicted in Figure[£.3] Due
to the strict definition of these topologies and the necessity to consider arbitrary network
structures in DFL, these network topologies are often combined to form hybrid variants.

In FL, we distinguish between two types of network connectivity: (1) The consistent
connectivity arising from connectivity limitations and contractual limitations, which re-
mains the same during the whole training process, and (2) the inconsistent (or variable)
connectivity that changes over time due to node outages and the optimization technique
of partial device participation (Section . Note that in this section, we cover the
consistent connectivity, referred to as network topologyﬂ Inconsistent connectivity is
regarded with partial device participation in Section [4.3.3] given their common charac-
teristic that actors do not receive model updates from all of their neighboring actors
and the similar change in connection links. Although the active links are not selected
by the partial device participation strategy but determined by inconsistent connectivity,
the reception of model updates is similar in both cases.

®A data contract defines the terms for exchanging data (in our case model parameters) between two
parties.

STn this survey, the term ‘network topology’ refers exclusively to consistent connectivity and, hence,
does not encompass inconsistent connectivity, even though this is sometimes referred to as ’variable
network topology’ in the literature.

49

Fully-connected Topology The fully-connected mesh topology—sometimes also re-
ferred to as complete graph topology—assumes that all actors are connected to each
other actor in the network. Thus, with a total number of n actors, each actor main-
tains n — 1 bi-directional network links (see Figure [4.3a). Works on DFL consider a
fully-connected network topology [87], [89], [90], [92] either as the basis for their imple-
mentation or in their experimental setup. An important point to note is that a fully-
connected network topology does not necessarily imply that every actor communicates
with all other actors, since the variable connectivity (i.e., inconsistent connectivity) may
further restrict the connectivity. In this context, the authors in [89] and in [92] employ
techniques from partial device participation (Section in their experiments, thus re-
ducing the communication to a subset of selected actors. Without further restrictions on
the connectivity, the model updates are transmitted from each actor to all other actors,
resulting in the maximal possible amount of n(n — 1) transmissions per communication
round. Also worth mentioning is that in addition to considering the fully-connected
mesh topology in their experiments, the authors in [87] perform experiments with the
ring topology and the torus topology, the authors in [90] conduct experiments with the
chain topology and the random topology, and the authors in [92] include the ring topol-
ogy in their experiments. Thereby, they provide a comparison of fully-connected mesh
topologies in DFL with other topologies.

Ring Topology In a ring topology, each actor is connected to exactly two neighboring
actors, forming a closed chain of connected nodes with a single continuous path through
the network (see Figure . Ring topologies emerge in DFL to reduce communication
overhead, since the communication cost of DFL with a ring topology grows linearly
with the number of participants. More specifically, a newly added actor places itself
between two actors in the ring, resulting in one additional network link over which
model parameters are exchanged. Thus, the number of model update transmissions in
each communication round is given by 2n. Koloskova et al. [87] perform experiments
to compare the convergence of the fully-connected mesh topology, the ring topology,
and the torus topology with n € {9,25,64} actors. Thereby, they show that such
connectivity restrictions as in the ring topology cause only a mild negative impact on the
convergence while reducing the order of communication growth. Furthermore, in [92], the
authors consider two different methods for constructing the ring network, (1) randomly
connecting the nodes to a ring topology or (2) constructing a consensus-aware ring
greedily to maximize the consensus-distance between neighbors. To analyze the impact
of the network topology, they additionally compare the performances of the ring topology
and the fully-connected mesh topology in their experiments. In |30], the authors evaluate
their proposed method using a hybrid topology called Ring of Cliques, in which 4 fully-
connected cliques of 4 actors each are connected in a ring structure (16 actors in total).

Grid Topology Another characteristic network constellation is the grid topology. Here,
the actors form an evenly-spaced two-dimensional grid connecting to their respective
neighbors (see Figure [4.3d). Hence, inner nodes of the grid connect to 4 adjacent nodes,
while edge nodes connect to only 3 nodes and corner nodes connect to 2 neighbors.
Consequently, actors in a DFL infrastructure with grid topology exchange their model
parameter updates with up to 4 neighbors. In a square grid constellation, for instance,
one communication round comprises 4(n — y/n) transmissions of model updates. How-

50

ever, only a few DFL approaches consider such (artificially constructed) grid topologies
due to their rarity in real-world deployments. Soltani et al. [30], for instance, perform
experiments using the grid topology as well as the hybrid Ring of Cliques topology, with
16 actors each. When training with the grid topology, their results indicate slightly
faster convergence in terms of communication traffic than for the Ring of Cliques. The
difference, however, is so small that it does not allow for any general claims in this
regard.

Torus Topology The torus topology is an extension of the grid topology in which the
edge nodes additionally connect to the corresponding nodes on the opposite edge (see
Figure. As aresult, all nodes have a degree of 4 (i.e., connect to 4 nodes). The torus
topology is sometimes also referred to as a 2D ring, since connecting an edge node to the
opposite edge forms a continuous path (i.e., ring) through the respective row or column
of the grid. Since each actor is connected to exactly 4 neighboring actors, there are 4n
model update transmissions in each communication round. In the experiments of [87],
the comparison of performance on the fully-connected mesh topology, the ring topology,
and the torus topology demonstrates only mild performance differences between these
topologies, with the torus topology falling between the other two in terms of performance.
Beyond employing the torus topology for experiments, Zong et al. [93] introduce a 2D-
attention-based device placement algorithm to minimize the overall communication cost.
Here, the algorithm arranges the actors within the torus schema intending to minimize
both the transmission time and the communication latency.

Other and Hybrid Topologies Besides these popular network topologies, also other
topologies like the chain topology (i.e., ring topology with one link removed) [90], the
exponential graph topology (i.e., every actor is connected to [logyn| actors) [37], or
a random graph (i.e., connections are randomly constructed, for instance with the
Erd6s—Rényi random graph model) [38], [39], [88], [90] are considered in the literature.
Moreover, network topologies are sometimes combined into hybrid topologies, such as
the “Ring of Cliques” topology in reference [30], which arranges so-called cliques (i.e.,
fully-connected groups of actors) in a ring topology. In general, hybrid topologies can
combine arbitrary network topologies.

We have seen that network topologies highly influence the communication cost of a
DFL system, as they determine which actors can communicate with each other. Thus,
network topologies restrict the number of possible model update transmissions. Among
the topologies discussed, communication is most restricted by the ring topology, followed
by the grid topology and then the torus topology. The fully-connected topology does not
restrict communication, as it allows every actor to communicate with all other actors.
The majority of DFL approaches consider fully-connected mesh topologies and random
graph topologies (see Table 4.2)). However, it is important to note that various strategies
exist for constructing random graph topologies. Therefore, a direct comparison of the
“popularity” of random graph topologies with that of strictly defined topologies is not
meaningful.

o1

4| Communication Optimization in DFL }7
4

A ¢ Y

[Compression] [Local Computation] [Partial Device]

Participation
[Qo] [Sparsiﬁcation] [Static] [Dynamic] [Random] [Selective]
Y
Others

Figure 4.4.: Taxonomy with the most prominent techniques to optimize the communi-
cation of DFL and their key categories.

4.3. Communication Optimization Techniques

In addition to the essential components of DFL infrastructures discussed in Section [4.2
various optimization techniques can be applied to further enhance the communication
efficiency. While these techniques are not strictly indispensable for a DFL system, they
are of gread utility for reducing the communication cost. We identified three major
categories of communication optimization techniques in DFL, which we discuss in the
following subsections: Compression (Section , Local Computation (Section ,
and Partial Device Participation (Section . For each of these categories, we outline
its origins, identify prominent classes, explain the general concept, and discuss the impact
on communication cost with emerging challenges and trade-offs. Figure illustrates
the taxonomy and Table links the underlying classes to common approaches from
recent publications.

Many of the following techniques originated in CFL or in distributed ML, and have
been adopted to DFL. However, since DFL features a different setting than CFL, these
methods require adaptation to match the changes in system characteristics.

4.3.1. Compression

Model compression is a well-known concept for reducing the communication cost be-
tween the clients and the server in CFL systems. In this process, each client applies
lossy compression to the model parameter updates before transmitting them to the cen-
tral server for aggregation (downlink compression). Likewise, the server responds with a
compressed version of the aggregated model parameters (uplink compression). Popular
compression methods for this purpose include quantization methods and sparsification
methods. However, the loss of information involved usually sacrifices training perfor-
mance of the global model and, hence, creates a trade-off between compression ratio
and training performance. Therefore, research groups continue to develop compression
techniques that maximize the compression ratio while preserving good convergence rates.

In DFL systems, we can implement compression methods in a similar way as in CFL
systems. The main difference here is that we compress the model parameter updates that
are communicated between the individual actors. In contrast to compression in CFL, the

92

’ Reference \ Compression \ Local Computation \ Partial Device Participation ‘

Quantization, Random
1871 Sparsification None (not in experiments)
[29] None 1, 10 Updates Random 20%
188] None Implicitly (PDP) Selective (connectivity)
189] Sparsification None Selective (bandwidth), single
[90] Sparsification 5 Updates None
191] Quantization 4 Updates None
[39] 1BCS Random in [5, 15] Random 20%, 50%, 80%
[92] Sparsification 50 Updates Selective (consensus)
193] None None None
137] Sparsification | Implicitly (PCP) Random, single
[94] None 1, 2, 5, 10 Updates None
138] None 2 Updates Selective (loss)
[30] None 5 Updates Selective (similarity), single

Table 4.5.: Publications discussed in this survey (“Reference”) with the corresponding
implementation categories of the communication optimization techniques:
Compression (“1BCS”: 1-bit compressed sensing [104]), Local Computation
(“Implicitly (PDP)”: the technique of Partial Device Participation causes de-
vices to perform multiple consecutive local updates), and Partial Device Par-
ticipation (“Random”: participating devices are randomly selected; “Selective
(XX)”: participating devices are selected based on XX; “Single” / “PP%”: only
one / PP% neighboring devices participate in every round).

scattered nature of communication links in DFL introduces additional challenges in terms
of maintaining convergence. Therefore, taking into account the system environment (e.g.,
network topology, synchronization method, etc.) is of high importance for implementing
compression in DFL.

In the literature, two compression techniques dominate for the use with DFL: Quan-
tization [87], [91] and sparsification [37], [89], [90], [92]. Both techniques belong to the
class of lossy compression techniques, which use inexact approximations to compress
data. Note that lossless compression techniques are generally not suitable for DFL as
they require an expected structure in the data, which is not the case with model pa-
rameters or gradients. With lossy compression techniques, it is crucial to consider the
impact on the model accuracy caused by the loss of information due to the entailed ap-
proximations. However, with a proper balance between model performance and system
efficiency, it is possible to significantly reduce the size of the model parameters while
maintaining reasonable accuracy [105].

Quantization In literature on DFL approaches, we encounter various quantization
schemes. In general, quantization compresses data by reducing the number of bits re-
quired to represent the data. A simple but popular quantization scheme is randomized
quantization. Implemented (among others) in reference [87], randomized quantization
divides the data range into a set of evenly distributed quantization levels (i.e., bins)
and then randomly rounds the data values to the adjacent lower or upper bin. Con-

93

sequently, we reduce the data size—and thus reduce communication cost—by placing
the bins on values that can be represented by a smaller quantity of bits. In addition
to uniform quantization methods like randomized quantization, DFL also adopts non-
uniform approaches. In [91], for instance, the authors apply the Lloyd-Max quantization
algorithm and adjust the quantization levels adaptively to minimize the involved distor-
tion. Thereby, they accounts for time-varying convergence rates and variable gradient
distributions while providing convergence guarantees without convex loss assumptions.
Besides reducing the data size, the authors in [106] incorporate quantization to achieve
differential privacy guarantees, jointly addressing the challenge of communication effi-
ciency and privacy concerns.

Sparsification Sparsification in distributed training (i.e., the exchange of sparse up-
dates) has shown great potential to reduce communication cost without drastic conse-
quences for the convergence [107]. Similarly, the concept of sparsification gains tremen-
dous popularity in DFL to decrease the amount of transmitted parameters. Basically,
sparsification generates a sparse representation of a matrix by removing (i.e., zeroing)
a considerable number of entries. However, various strategies exist for sparsification in
DFL, trying to optimize the trade-off between communication efficiency and information
loss. In this regard, the authors in [92] implement the method of random sparsification
(RandomK), that preserves k randomly selected entries, and optimizes it by determining
actor-specific compression ratios. The semi-decentralized FL framework GossipFL [89],
on the contrary, generates a random sparsification mask at every client based on a com-
mon seed received from the light-weight coordinator. Therefore, all model parameter
updates communicated among the actors exhibit the same sparsity structure in each
communication round. The sparsity masks are generated by drawing from a Bernoulli
distribution with a probability of %, where ¢ is the compression ratio specifying the
fraction of non-zero elements after sparsification. Besides randomly constructing the
sparsification mask, a highly popular method is TopK sparsification, which keeps only
the k elements with the highest magnitude |107], |[108]. In [90], the authors propose an
improvement of TopK sparsification in DFL by adding a momentum to the residual. This
additional momentum restricts the impact of the current gradient, resulting in a more
stable training and improved performance. Another approach to retain convergence rate
with sparsification is proposed by the authors in [37]. Their adaptive sparse training
method minimizes the impact of sparsification on the loss function and simultaneously
considers the imminent effect of pruned parameters on the training process.

In addition to quantization and sparsification methods, several other compression
techniques exist which qualify for reducing communication cost in DFL. However, quan-
tization and sparsification are the most popular strategies, as they have proven their
suitability for optimization tasks. Also worth mentioning is the DFL approach in [39],
which combines sparsification with quantization by using one-bit compressive sens-
ing (1BCS) [104]. Although 1BCS itself belongs to the group of quantization tech-
niques, its input data must be sparse, requiring the employment of sparsification meth-
ods. Therefore, the authors in [39] perform model training subject to a sparsity con-
straint before applying 1BCS to allow the transmission of one-bit information among the
actors. Besides DFL approaches that explicitly implement compression techniques [37],
[39], [87], [89]—[92], compression methods are typically orthogonal to other components
of the system and, hence, can be integrated on top of the existing framework.

o4

INIT Update Exchange Aggregate END
_) ans®
Local Model > Model

...........)
l Model P() Updates Updates]

Figure 4.5.: High-level DFL process with Local Computation through the predicate func-
tion P(-); Performing consecutive local updates until P(-) evaluates posi-
tively.

>

4.3.2. Local Computation

The concept of local computation (also known as local-updating SGD, intermittent com-
munication, or federated averaging) is a simple yet powerful strategy to enhance com-
munication efficiency in DFL systems. With local computation, multiple local updating
steps are performed at the actor (instead of just one) before the updates to the model pa-
rameters are exchanged with the neighboring actors and the received updates are aggre-
gated (synchronization step). Consequently, the actors only communicate after several
local updates rather than after each update, reducing the communication by a constant
factor. However, this intermittent synchronization introduces a trade-off between con-
vergence rate and communication efficiency, as it gives the actors leeway to diverge.
Alongside its numerous applications in CFL , , and its implementation in
the Federated Averaging algorithm , the local computation strategy shows success in
general distributed optimization systems —. As a natural consequence, this con-
cept is implemented by many DFL approaches to optimize communication efficiency ,

30), 88], [39), [90] 92 [94).

The implementations of local computation in distributed ML, CFL, and DFL follow
the same concept, since all of them involve individual devices that perform computations
locally and exchange updates to collaboratively approach a common goal. What changes
between (and also within) these scenarios, however, is the general setting (e.g., connec-
tivity, computing resources). Therefore, we should consider different behavior in terms
of convergence, accuracy, and communication in the respective setting when adopting
the concept of local computation.

Applications of local computation can be divided into two distinct categories, depend-
ing on whether the quantity of successive local updates is statically fixed or dynamically
adapted. With static specification, each actor in the DFL system performs a constant
number of 7 local iterations per global synchronization. With dynamic adaptation, on
the other hand, the point of aggregation is determined dynamically based on criteria
such as divergence to a global reference model and computing resources of the
individual devices . Figure depicts the high-level DFL process including general
local computation through a predicate function P(-) which is represented by the dotted
red lines. Here, the result of P(-) indicates whether to perform another round of local
updating or to proceed with the exchange and aggregation of model parameter updates
(i.e.,, the synchronization step). The construction of P(-) allows to statically specify the

95

amount of local updates 7 (e.g., P(t) : ¢ mod 7 = 0, with current epoch t) as well as to
define more sophisticated, dynamic synchronization rules. Parameter synchronization in
a statically specified interval is often referred to as periodic synchronization.

Static In the context of DFL, the majority of approaches that implement local com-
putation define static quantities of local updates. It is important to note, that the
proper choice of the amount of local updates highly depends on the respective data
properties and the system configuration. To excel the involved trade-off between conver-
gence rate and communication efficiency, we thus have to consider (1) the heterogeneity
of data partitions among actors to avoid concept drifts, (2) the computing resources
of the individual actors to allow for fairly-balanced contributions, and (3) the general
communication scenario (i.e., network topology (Section |4.2.3)), synchronization method
(Section , and partial device participation (Section |4.3.3))) to reduce the communi-
cation overhead while ensuring global convergence. By restricting the synchronization of
model parameters to every 7 rounds instead of every round, we reduce the communica-
tion cost by a factor of 1/7. Note that the efficiency of local computation depends on the
inter-play of the amount of local updates 7, the applied batch size, and the respective
learning rate, as we can decrease the batch size and the learning rate to allow for an
increase in 7. Within the scope of common approaches, the authors in [29], |30], [38],
190], [91] conduct experiments with a static quantity of up to 10 local updates. Further-
more, in [92], the authors perform 50 local training epochs with a batch size of only 32
data samples. In [94], on the other hand, they compare the accuracy with 1, 2, 5, and
10 local updates in their experiments, showing the importance of performing at least 2
local updates to accelerate convergence in their experimental setup. In the experiments
of [39], the respective authors allow each actor to perform an individual amount of local
training epochs, randomly drawn from [5,15]. However, they do not elaborate on the
impact of heterogeneous quantities of local updates.

Dynamic While, to the best of our knowledge, literature does not yet explicitly ad-
dress dynamic strategies for local computation specifically in DFL (except with the help
of a central node [41]), they are successful in distributed ML [114], [115]. Given the
strong similarity of DFL to distributed ML in this regard, we can adopt many dynamic
approaches for local computation from distributed ML directly into DFL. Nevertheless,
two common approaches from recent literature implicitly employ a variable number of
local training epochs [37], [88], thus belonging to the category of dynamic local compu-
tation. It is important to note that these approaches do not explicitly facilitate multiple
local training epochs. Instead, other system components cause the repeated local train-
ing of the actors. More specifically, the authors in [88] incorporate a random selection
of network links from partial device participation (Section , which could result in
actors not exchanging model updates, eventually leading to consecutive local updates.
In reference [37], on the other hand, each actor sends its model parameter update to one
random neighbor in each round, which may result in some actors not receiving a model
update and, hence, continuing the training on stale model parameters (i.e., performing
a consecutive local training epoch).

o6

(a) Epoch 1 (b) Epoch 2 (¢) Epoch 3

Figure 4.6.: Exemplary Partial Device Participation with random selection of 40% (i.e.,
2/5) neighboring actors over three epochs—drawing a new subset of acti-
vated links in each epoch (as illustrated in [4.6a} [4.6b) and |4.6c).

4.3.3. Partial Device Participation

Partial Device Participation in FL has already been implemented in 2016 when the Fed-
erated Averaging algorithm was introduced . The goal of partial device participation,
also known as client selection and neighbor selection, is to reduce the communication
overhead by limiting communication of each actor to only a subset of neighboring actors
in our DFL system. Thereby, this technique further restricts the network connectivity
in the DFL system, since it only allows the transmission of model parameter updates
over a fraction of network links. However, in contrast to the time-consistent network
topology (Section , the connectivity between actors in partial device participation
changes throughout the learning procedure (i.e., in every epoch). Relying on the concept
of information spread in gossip protocols, consensus between the actors can be achieved

under basic assumptions [116], [117].

With partial device participation, we can reduce the communication in DFL by a
constant factor. An exemplary scenario of three epochs of learning in a fully-connected
network of 6 actors with random selection of 40% of neighbors is depicted in Figure [4.6
Without partial device participation, every actor would transmit 5 model parameter
updates in each epoch, resulting in (6 actors - 5 transmissions) = 30 transmissions per
epoch. In contrast, with a participation ratio of 40%, this number reduces to (6 actors -
(40% - 5 transmissions)) = 12 transmissions.

Random partial device participation emerges as a simple but powerful strategy to
reduce communication in DFL while maintaining reasonable convergence. Therefore,
many DFL approaches adopt this random selection strategy in their system, employing
a variety of participation rates , , . Given the changed setting in approaches
that leverage Mutual Knowledge Transfer for model aggregation, the authors in [29]
apply random partial device participation to select both the senders and the receivers of
model parameter updates in the system. Besides random selection of neighbors, more
sophisticated strategies exist which try to further reduce communication overhead. To
achieve this, these strategies focus on minimizing the participation ratio to communicate
with fewer neighbors in each round while preserving convergence and selecting proper
neighbors to increase convergence rate and thus reduce the number of epochs required
to converge.

o7

’ Collection Commonality \ Publications ‘

I Full device participation (Section [4.4.1)) [90], o1], [93], [94] |
IT Dynamic number of local updates (Section [4.4.2) 137], [39], [88] |
II1 Perfect parameter transmission (Section |4.4.3) 129], [30], [38] |
v Sparsification for compression (Section [4.4.4) 187], 189], [92] |

Table 4.6.: Grouping of publications into four distinct collections according to common-
alities in implemented optimization techniques.

The authors in [89] and in [30] limit the communication to only a single neighbor per
actor in each epoch. Moreover, in [89], they consider the respective inter-node bandwidth
when selecting the neighbor but still allow some randomness in the selection process in
order to facilitate convergence. Without this level of randomness, their strategy would
always select the connection with the highest bandwidth, resulting in a permanent change
of network topology in the case of consistent bandwidths. In [30], on the other hand,
the authors select the most informative neighbor for the parameter transmission. More
specifically, they pick the neighbor with the currently most divergent model parameters,
measured by the cosine distance between the last layers of the model. By doing so,
however, we require additional communication to retrieve the last layer of the model
parameters from all neighbors. Therefore, the advantage of this approach regarding
communication reduction highly depends on the size of the model and on the number of
potential neighbors.

The loss-based strategy from Liao et al. [38] also requires additional communication, as
the actors transmit their training loss (single value) to all connected actors directly after
the local updating step. Based on these loss values and the communication frequencies to
the individual connected actors, each actor then calculates priorities to select the set of
activated neighbors in each epoch. Note that they embed a limit for the communication
frequency in the priority calculations such that the priority of selecting a specific actor
reaches its maximal value after a certain period without communication.

Unlike the selection of neighboring actors from the perspective of each individual actor
(actor-centric selection), the authors in [88] and in [92] activate a subset of bi-directional
links (network-centric selection). To achieve this, Wang et al. [88] decompose the base
network topology into matchings (i.e., sets of disjoint links). They then assign an ac-
tivation probability to each matching and optimize these probabilities to maximize the
algebraic connectivity. Thereby, they prioritize connectivity-critical links, which eventu-
ally enhances the trade-off between convergence and communication. Similarly, in [92],
the authors construct an active network topology on top of the consistent network topol-
ogy in each epoch, trying to minimize the round time. To achieve this, they calculate the
time required by each existing network link to remove slow network links iteratively from
the base network topology. Simultaneously, they apply constraints based on the consen-
sus distance to guarantee convergence, and adjust the individual compression ratios at
the actors to comply with these constraints.

o8

Partial Device Participation Local Computation Compression

IS

Approaches

Approaches

Approaches
oW

13
Approaches

5

Random Selective Dynamic uant.+Spars. Sparsification|

Collection
1

Figure 4.7.: Illustration of our extraction process for assigning the publications from the
DFL literature to four coherent collections. The first collection extracts
approaches that do not implement partial device participation; the second
collection takes out the approaches that employ a dynamic strategy for lo-
cal computation; and the third and fourth collections differentiate between
whether or not they implement compression.

4.4. Communication Efficiency of DFL Approaches

In this section, we examine the interplay between the techniques outlined in the tax-
onomies from Section [4.2] and Section [£.3] with regard to communication efficiency by
taking a holistic look at their implementations in common DFL approaches. In addition,
we highlight the main objectives of the approaches and review their findings.

To avoid addressing each publication individually, we divide the 13 DFL publications
discussed in this survey into four collections based on our taxonomy of communication
optimization techniques. More specifically, we look at the distribution of the respective
strategies to extract coherent sets from the 13 publications. The extraction process is il-
lustrated in Figure[4.7] First, we consider the strategies from partial device participation,
extracting the approaches that do not implement partial device participation (i.e., each
actor involves all neighboring actors in the model exchange phase) to form Collection I.
Next, we consider the strategies for local computation in approaches that implement
partial device participation, and construct Collection II of approaches with dynamic
numbers of local updates. Finally, the distribution of compression strategies naturally
divides the remaining approaches into Collection III without compression and Collec-
tion IV in which the approaches apply sparsification. Table [4.6] lists the four collections
including the publications they contain and their uniting commonality. By discussing the
publications in these collections throughout the following subsections, we reveal typical
combinations of the collection feature with other communication-influencing methods.

4.4.1. Collection I: Full Device Participation

Collection I comprises references , , , , which, in addition to implement-
ing full device participation, all employ the synchronous Synchronization Method (Sec-
tion. The combination of full device participation and a synchronous DFL system
offers the advantage of relying on exactly one update from each neighboring actor in ev-
ery communication round. In contrast, actors in asynchronous DFL must support vary-

99

ing numbers of received updates anyway, thus promoting the implementation of PDP.
In [90], [91], [93], they follow the wAvg method for Model Aggregation (Section [4.2.1)),
whereas in [94], the authors follow the incAvg method. These four publications differ
in their Network Topology (see Section , Compression method (see Section ,
and the number of local updates for Local Computation (see Section , covering a
large portion of possible combinations with different strategies from these techniques.
Wang et al. [90] perform 5 local updates, apply their novel sparsification method (TopK
sparsification with momentum), and conduct experiments under several network topolo-
gies (fully-connected, random graph, and chain topology). In [91], the authors also
implement a novel compression method, namely the Lloyd-Max quantizer with adaptive
quantization levels. In their experiments, they perform 4 local updates, but we were
unable to discover from the publication whether they use a random graph or a fully-
connected network topology. In contrast to these two approaches, Gupta et al. |[94] do
not implement a compression method to reduce the size of the communicated model
updates. Their primary innovation lies in selecting the best path through the network
for the incAvg aggregation method, optimizing both accuracy and communication cost.
They also implement Local Computation, considering the set of 1, 2, 5, and 10 local up-
dates under the directed graph network topology. In [93], the authors do not facilitate
any of the communication optimization techniques discussed in Section [£.3] However,
they are optimizing the communication overhead by arranging the network topology into
a torus topology. Within this framework, they employ a two-layer circular parameter
synchronization strategy to reduce the overall frequency of parameter synchronization.

The experiments of all four publications in Collection I show a reduction in commu-
nication compared to their baselines. Wang et al. [90] evaluate the communication cost
and the robustness to adversaries of their novel TopK sparsification method with mo-
mentum (MomTopK). They compare their results against FedAvg [1], standard TopK
sparsification [107], and RandomK sparsification [118], evaluating the communication
cost considering the convergence rate in terms of the Area Under the Curve and the F1-
score metrics. Throughout their experiments, they set the sparsification ratio to 0.4 for
all sparsification methods. This results in a communication reduction of 60% compared
to FedAvg, with only a slight degradation in the convergence rate. Furthermore, they
report that their approach converges the fastest among the baselines that implement
sparsification. MomTopK converges almost twice as fast as the RandomK approach,
whereas the TopK method seems to have difficulties converging in their experiments.

In contrast to measuring convergence speed in terms of the number of communication
rounds in [90], the authors in [91] additionally consider the time progression under a
fixed communication rate of 100 Mb/s, which is proportional to the number of bits
communicated. In this way, they compare the communication cost of their quantization
approach (LM-DFL) against the baselines of DFL without quantization, DFL with the
ALQ quantizer [119], and DFL with the QSGD quantizer |[120]. Similarly to the results
in [90], DFL without compression shows the best convergence with the same number of
iterations. Despite this, the convergence of LM-DFL outperforms the baselines in both
the number of iterations and the time progression.

In [93] the authors evaluate the communication overhead based on the time cost re-
quired to perform a certain number of steps. Thereby, they compare their novel param-
eter synchronization strategy (Fedcs) against the gossip algorithm [116] under both the
fully-connected and the torus network topology. They report the superiority of Fedcs

60

over the baselines for scenarios with 16, 25, 64, and 100 devices in the network and a
consistent number of 2(n — 1) transmitted model updates per round. Additionally, they
evaluate the reduction in communication overhead of their device placement algorithm
in an ablation study under various network sizes, yielding optimization rates between
40% and 83% compared to a random placement.

Unlike all of the approaches above, in [94], they calculate the communication cost as
the sum of edge weights over which a model update is transmitted, thus considering the
bandwidth of the connection links. They demonstrate that their incremental training
approach (TravellingFL) converges fast, hence, it lowers the communication bandwidth
requirements as it needs by performing fewer communication rounds to converge. Com-
pared to FedProx [121], Gupta et al. [94] demonstrate a decrease in communication cost
of 23% to achieve similar accuracy in a network with 7 actors. In addition to compar-
isons with the baselines, they experimentally demonstrate the behavior of TravellingFL
in numerous aspects in their publication, including the effect of local training epochs
(i.e., Local Computation in Section , the scalability in terms of the number of
actors, their selection of the optimal path through the network, and the performance of
different model architectures.

4.4.2. Collection Il: Dynamic Number of Local Updates

The publications in Collection II employ a dynamic number of local updates for Local
Computation (see Section , either by randomly selecting this quantity from a pre-
specified range [39] or by indirectly allowing for consecutive local updates due to other
techniques [37], |88]. In [88] and in [37], the authors employ a wAvg method for Model
Aggregation (see Section whereas in [39], they utilize the inexact alternating di-
rection method of multipliers (1IADM). These three publications cover all three types of
Synchronization Methods (see Section , underlining the compatibility of dynamic
Local Computation in synchronous [88], asynchronous [37], and semi-synchronous [39]
DFL systems. The authors in both [39] and [37] implement a random selection of devices
for Partial Device Participation (see Section , alongside the Compression technique
(see Section {4.3.1)) of compressed sensing or sparsification, respectively. In contrast,
Wang et al. [88] do not involve Compression. Their novelty lies in their matching-based
selection strategy (MATCHA) for Partial Device Participation, in which they decom-
pose the network topology into a set of matchings{ﬂ7 select a set of matchings that are
activated, and optimize the selection to ensure fast convergence and minimize the com-
munication delay. Activating only a subset of matchings opens up the possibility that
some actors do not connect to a neighboring actor. In this case, the respective actors do
not share their model update but continue to train for a consecutive local epoch, thus fa-
cilitating the technique of Local Computation implicitly. Similarly, Liu et al. [37] employ
a random selection of one neighboring actor for transmitting the model update. Hence,
actors that do not receive a model update from their neighbors perform another updat-
ing round without additional input, i.e., Local Computation. Note that even though
the authors in [37] call the iterations of this updating round “local updates”, we do not
consider this as an implementation of Local Computation as it involves the aggregation
of model updates from neighboring actors, thus not being strictly local. In [39], they

"A matching is a subgraph of the original network with a degree of one (i.e., each actor is connected
to at most one neighboring actor).

61

draw a random number between 10 and 15 in each round to determine the number of
local updates in one of their experiments, thus directly implementing a dynamic number
of local updates.

The experiments of Wang et al. [88] focus on measuring the training loss over time
and over the number of epochs. They compare various specifications of the communica-
tion budget for MATCHA against the baselines vanilla decentralized SGD [122], [123],
periodic decentralized SGD [113], [123], and ChocoSGD [87]. The communication bud-
get indicates the fraction of the reduction in communication per iteration compared to
vanilla decentralized SGD. In their experiments, they find that a communication budget
of 0.4 not only reduces the communication time by 2.5x but also results in a lower error
than vanilla decentralized SGD. They also report a reduction in wall-clock time of 5x
less than vanilla decentralized SGD with a communication budget of 0.02 to reach a
certain target loss. Comparisons of MATCHA to the periodic decentralized SGD result
in consistently achieving better convergence while preserving the same runtime per iter-
ation. Additionally, they demonstrate that MATCHA can be used as a tool to improve
other decentralized computation tasks, reporting a 2x speedup in wall-clock time when
implementing MATCHA on top of ChocoSGD.

Zhou et al. |39] conduct an ablation study of their DFL approach (CEPS). By ablat-
ing their compression method and the integrated differential privacy mechanism (total
of four combinations), they assess the behavior of CEPS under various number of nodes,
values of the differential privacy parameter €, and participation rates for Partial Device
Participation. They report that enabling both 1BCS compression and differential pri-
vacy requires more iterations to converge when there are fewer actors. As the number
of nodes increases, however, the differences diminish. Regarding the participation rate,
their results show a minimal impact on the convergence of different values. A higher par-
ticipation rate leads to an increase in computational time, which is compensated by a de-
crease in the amount of iterations needed to converge. In addition to this ablation study,
Zhou et al. [39] compare CEPS with the baselines D-PSGD [122], DFedAvgM [124], and
DFedSAM [125] in the second part of their experiments. By measuring the data trans-
mission volume (DTV), they show that CEPS achieves a substantial reduction in DTV,
saving at least 90% of the communication overhead compared to the baselines. More-
over, they demonstrate that increasing the participation rate leads to fewer iterations
but higher DTV. CEPS requires significantly fewer communication rounds to converge
than the baselines, therefore consistently achieving the highest communication efficiency.

Liu et al. [37] compare their DFL approach (AEDFL) against 14 baselines, namely
FedAvg [1], FedProx [126], FedNova [75], SAFA [127], Sageflow |128], AD-PSGD |[129],
FedSA [130], ASO-Fed [131], FedBuff [132], Port [133], HRank [134], FedAP [135],
HAP [136], and DisPFL [35]. The experiments consider a network of 100 actors which
are connected in an exponential graph network topology, and the data was partitioned
using the Dirichlet distribution [68]. AEDFL achieves the highest accuracy and signifi-
cantly outperforms the baselines in terms of training speed. Their experiments comprise
several image classification tasks as well as one natural language processing task. In all
of these tasks, AEDFL shows a reduction in training time between 52.2% and 92.8%,
and a reduction in computation cost between 6.9% and 42.3% compared to the baselines.
Unfortunately, their experiments do not explicitly evaluate the impact of their sparse
model training technique on the communication cost.

62

4.4.3. Collection lll: Perfect Parameter Transmission

Collection IIT comprises the subset of three approaches from the unassigned publica-
tions that do not compress the parameters in the model update before sending them
over the network, thus employing perfect parameter transmission [29], [30], [38]. Instead
of optimizing communication cost through Compression, all three approaches implement
Partial Device Participation (see Section and static Local Computation (see Sec-
tion to enhance communication efficiency. Li et al. [29] select 20% of the actors
to participate in training and conduct experiments with 1 and 10 local updates at the
actors. In [38], the authors introduce a loss-based strategy for Partial Device Participa-
tion and perform two consecutive local updates in their experiments. Soltani et al. [30]
also propose a novel technique for Partial Device Participation. In contrast to [38], each
actor selects only a single neighboring actor to participate in the parameter exchange
based on the last layer model similarity. Their experiments involve a fixed quantity of
five local updates per communication round. All three approaches of Collection III dif-
fer in their network topology. In [29], the authors consider the popular fully-connected
topology. In [38], on the other hand, they employ a random, directed network topology
with a minimum amount of incoming neighbors for each device, and in [30], the authors
perform their experiments using both the grid topology and the hybrid topology called
Ring of Cliques. When it comes to the Model Aggregation method (see Section ,
the authors in [38] and in [30] implement the popular type of wAvg. Conversely, Li
et al. [29] propose model fusion by transferring learned knowledge between devices to
address the problem of data heterogeneity. Similarly outstanding is the Synchronization
Method (see Section by Liao et al. [38], as they propose an asynchronous DFL
system while the authors in [29] and in |30] implement the synchronous protocol.

In [29], the authors compare their approach (Def-KT) to the baselines FullAvg (as
implemented in [137]-[139]) and Combo [116] by conducting experiments on four different
datasets (MNIST [140], Fashion-MNIST [141], CIFAR-10 |142], and CIFAR-100 [142])
with two model types (multilayer perceptron and convolutional neural network) under
both homogeneously partitioned datasets and heterogeneously partitioned datasets with
various degrees of heterogeneity. To create a proper foundation for comparison, they
configure all approaches to have the same communication overhead per round. That
way, they perform several experiments to evaluate the impact of different numbers of
actors in the network, the effect of various amounts of local updates, and the differences
in training caused by heterogeneous partitioning. The results show that, in most cases,
Def-KT converges faster and attains a higher accuracy than the baselines. Additionally,
Def-KT is more reliable than the baselines, since the accuracy oscillates less severely
under the heterogeneous scenario. The evaluation of local accuracy reveals that Def-
KT significantly outperforms the baselines, and the gap in local accuracy between Def-
KT and the baselines enlarges with an increasing degree of heterogeneity. Hence, the
proposed method is more robust to heterogeneous data.

The authors in [38] also perform experiments with both homogeneously and het-
erogeneously partitioned datasets. They compare their asynchronous DFL approach
(AsyDFL) to the baselines AsyNG [28] (AsyDFL is an extension of AsyNG), AGP [143],
OSGP [144], and NetMax [145], performing image classification tasks with two dif-
ferent models (AlexNet [146] and VGG16 [147]) on two datasets (EMNIST [148] and
ImageNet-100, a subset of ImageNet [149]). Their performance metrics include test ac-

63

curacy, training loss, network traffic, and the time to converge. In their evaluations,
AsyDFL achieves the highest accuracy compared to the baselines in both the homoge-
neous and heterogeneous data scenario after a fixed time. Furthermore, the experiments
indicate that the superiority of AsyDFL over the baselines increases with higher data
heterogeneity. In terms of communication overhead, they demonstrate a reduction by
54% and 71% in network traffic consumption to achieve a certain accuracy, compared
to the baselines AGP and OSGP, respectively. Comparisons of the completion times to
reach a target accuracy reveal the superiority of asynchronous approaches in general, as
the synchronous baseline OSGP requires almost twice as much time to reach the target
accuracy than AsyDFL and the other baselines. In summary, Liao et al. [38] conclude
their experiments with a reduction in communication cost by nearly 57% and a decrease
in completion time by about 35% compared to the baselines.

Similar to the approaches in [29] and |38], Soltani et al. [30] conduct experiments under
different degrees of data heterogeneity. They compare their DFL approach (DFLStar)
to the baselines D-PSGD [122], PASGD [123|, and DFLStar-RS (a variant of DFLStar
with random Partial Device Participation instead of their novel selection strategy) by
performing image classification with a convolutional neural network on two datasets:
CIFAR-10 and CIFAR-100 [142]. To assess the effectiveness of DFLStar, they consider
test accuracy, training time, and communication traffic in their experiments. Evalua-
tions of the test accuracy over time demonstrate that DFLStar consistently outperforms
the other baselines, maintaining the best performance across all degrees of data hetero-
geneity for both network topologies. Comparisons of the communication cost to achieve
a target accuracy indicate a cost reduction of approximately 96% for D-PSGD and
approximately 81% for PASGD. Therefore, DFLStar significantly minimizes the com-
munication cost. As a natural implication, they also report a decrease in training time
compared to D-PSGD and PASGD of up to 78% and up to 55.8%, respectively. Soltani
et al. |30] additionally conduct an ablation study to assess the benefit of their integrated
self-knowledge distillation and their selection strategy for Partial Device Participation,
resulting in an increase in accuracy of 5.2% from the self-knowledge distillation and up
to 2.45% from the selection strategy. This successfully demonstrates the advantages of
DFLStar and the implemented techniques.

4.4.4. Collection IV: Sparsification for Model Compression

The remaining three common approaches constitute Collection IV, finding their com-
monality in employing sparsification for Compression (see Section before sending
the model update over the network [87], [89], [92]. Since these three approaches focus
on advancing communication optimization techniques, they maintain simplicity with re-
gard to other DFL components by implementing the popular wAvg strategy for Model
Aggregation (see Section with the synchronous Synchronization Method (see Sec-
tion . In addition to experimenting with a fully-connected Network Topology (see
Section in all three publications, Koloskova et al. [87] consider the ring topology
and the torus topology, and Wang et al. [92] consider the ring topology. Only one of the
publications in Collection IV, namely the approach in [92], utilizes Local Computation
(see Section with 50 local updates per round. The key contributions by Koloskova
et al. |87] are a novel gossip-based stochastic gradient descent algorithm and a novel
gossip algorithm with support for arbitrary compression under linear convergence. They

64

consider the technique of Partial Device Participation (see Section in the form of
an exemplary compression operator that randomly removes model updates with a given
probability. However, they do not include this operator in their experiments. In [89], the
authors propose a novel gossip matrix generation algorithm to optimize bandwidth uti-
lization, thus introducing a new technique for Partial Device Participation. Here, each
actor communicates with only one neighboring actor, transmitting a model update that
is compressed using a global sparsification mask. Employing the same communication
optimization categories, Wang et al. [92] tackle the challenge of slow convergence rate
due to fixed communication topologies and static compression ratios. More specifically,
they propose an algorithm to optimize the selection for Partial Device Participation and
to determine the compression ratios dynamically for each actor.

The experiments in [87] are divided into two parts: The first part evaluates their gossip
approach (CHOCO-G) and the second part experiments with their stochastic gradient
descent technique (CHOCO-SGD). Both experiment sections rely on the datasets ep-
silon [150] and revl [151], homogeneously and heterogeneously partitioned among the
actors. The baselines to assess the performance of CHOCO-G include the gossip proto-
col with exact communication [117], PQDA [152] (named Q1-G in their experiments),
and the scheme Q2-G, which was proposed by Carli et al. [153]. The corresponding
experiments focus on the number of iterations and the number of transmitted bits in
contrast to the training error. In this setting, Koloskova et al. [87] conduct experiments
with random quantization QSGD [120], RandomK sparsification [108], and TopK spar-
sification [108]. Their experiments show that, with the QSGD quantizer, CHOCO-G
converges at the same rate as exact gossip while significantly outperforming Q1-G and
Q2-G. With RandomK sparsification, CHOCO-G also proves better than Q1-G and Q2-
G, yet 100x slower than exact gossip due to the 1% sparsification ratio. In terms of
transmitted bits, however, CHOCO-G shows the same convergence speed as exact gos-
sip. Additional experimental results demonstrate that using TopK sparsification can
further enhance convergence. To evaluate the performance of CHOCO-SGD, they com-
pare to using exact communication, and to the baselines DCD-PSGD and ECD-PSGD
from [154]. They report that CHOCO-SGD achieves almost the same convergence rate
as the exact algorithm with a reduction in communication of 100x when using Random-
1% sparsification and 15x when employing QSGD with 4-bit precision. CHOCO-SGD
consistently outperforms DCD-PSGD and ECD-PSGD in the experiments.

The experiments of [89] and [92] both include CHOCO-SGD [87] as one of their base-
lines. Tang et al. [89] conduct experiments in two settings: real-world bandwidths with
14 actors and random bandwidths with 32 or 100 actors. They consider image clas-
sification tasks using convolutional neural networks including ResNet-20 [155] on the
datasets MNIST [140] and CIFAR-10 [142], homogeneously and heterogeneously par-
titioned among the actors. They report the convergence performance, communication
efficiency, and bandwidth utilization of their approach (GossipFL), comparing to the
baselines FedAvg [7§], S-FedAvg [1], D-PSGD [122], DCD-PSGD ([154], and CHOCO-
SGD [87]. The experiments of reference [89] reveal that GossipFL achieves comparable
convergence with D-PSGD in the homogeneously partitioned data setting, yet outper-
forms all baselines with heterogeneously partitioned data. They also show that both
GossipFLL and CHOCO-SGD preserve the convergence performance on homogeneously
partitioned data at high compression ratios. In terms of communication cost, their find-
ings demonstrate a significant reduction in communication traffic while preserving the

65

model accuracy. For training the ResNet-20 model on CIFAR-10, they report 52% less
communication traffic than FedAvg and 34% less than S-FedAvg to reach the same ac-
curacy. For the MNIST dataset with its respective model, they report a reduction in
communication traffic of 40% and a decrease in required communication time of 19%
compared to S-FedAvg. Further large-scale experiments with 32 and 100 actors on het-
erogeneously partitioned data record a saving in communication cost of 14x compared to
FedAvg, 16 x compared to CHOCO-SGD, and 154 x compared to DCD-PSGD. The end-
to-end saving in communication time is approximately 10x compared to state-of-the-art
solutions.

Wang et al. [92] experiment with the models VGG [156] and ResNet-9 on the datasets
CIFAR-10 and CIFAR-100 |142], respectively. Their setup consists of 20 actors that are
connected with different, fluctuating bandwidths to simulate LAN and WAN connec-
tions. They evaluate the test accuracy, training time, and traffic consumption of their
approach (CoCo) compared to the baselines DCD-PSGD [154], CHOCO-SGD [87], and
SASP [118]. Additionally, they compare the performance to logically centralized train-
ing (LCT) where all links are activated without model compression, serving as an upper
bound for the accuracy of DFL in general. In their experiments, CoCo shows a speedup
in training by 10x and a reduction in communication traffic of 50% on average for
homogeneously partitioned data compared to the baselines. CHOCO-SGD emerges as
the most communication-efficient approach among all approaches, yet converging about
3x slower to a lower accuracy than CoCo. For different levels of heterogeneity in the
data partitioning, CoCo attains an acceleration in training from 6.5x to 13.8x and a
reduction in traffic consumption of 40% up to 68% compared to the baselines. Wang
et al. [92] also report that CoCo reaches similar accuracy as LCT. Moreover, with het-
erogeneously partitioned data, the accuracy of CoCo decreases only by 1.7% while the
accuracies of the baselines decrease by 3.7% — 9%, implying that CoCo is more robust to
heterogenous partitioning. Further experiments in a simulated real-world environment
on the SVHN dataset [157] record a speedup from 2.9x up to 3.8x to achieve the same
accuracy with a reduction in traffic consumption of 63% — 67%. Similar experiments on
the STL10 [158] dataset result in a speedup between 1.2x and 2.1x with a reduction
in communication traffic of 11% — 44%. These experiments further demonstrate the
effectiveness and efficiency of CoCo in real-world scenarios.

4.5. Discussion

Based on the established taxonomy of key DFL components critical to communication
efficiency, we analyzed the impact on communication efficiency within the general frame-
work of primary strategies (see Section . It becomes apparent that the respective
network topology exerts the most direct effect on communication cost by determining the
connectivity between actors. In contrast, individual model aggregation strategies and
synchronization methods show a strong indirect influence on communication cost through
the convergence rate. We further categorized popular techniques to optimize communi-
cation in DFL and examined their impact on communication efficiency in Section 4.3
Our findings highlight the versatility of compression and local computation techniques,
given their orthogonality to other DFL constituents and their excellent tuning capabil-
ity. To identify methodological combinations addressed in existing research, Section

66

explored the interplay of strategies from our taxonomies in concrete realizations. In
addition to providing a detailed review, this analysis highlights underexplored research
directions. For instance, integrating compression methods with knowledge transfer for
model aggregation and full device participation presents a promising combination for
future work. Furthermore, methods for dynamically determining the number of local
updates for local computation are currently under-researched, suggesting an avenue for
developing sophisticated strategies to enhance communication efficiency in DFL.

Our summary of the experimental findings of DFL approaches elucidates the over-
arching impact of their implemented strategies on both communication efficiency and
performance. However, there is no universal approach to reducing communication cost
in a DFL system, given the dependence on the overall system configuration, such as data
properties, model properties, and system components, as well as the numerous trade-offs
between the challenge of communication efficiency and other challenges. To clarify these
trade-offs, we discuss the effect of strategies to address the core challenges in DFL (as
listed in Section on communication efficiency in the following paragraphs.

Security and privacy X communication efficiency In DFL, additional measures are
often integrated to address security and privacy risks that the distributed and decen-
tralized design alone cannot mitigate (see Section . Those methods can influence
communication efficiency in various ways. Fault-tolerant DFL systems that are ro-
bust to node failures or dropouts often require more connections to provide redundancy.
Cryptographic methods for node verification or blockchain-based systems require the ex-
change of additional information such as cryptographic proofs or transaction metadata.
Depending on the method, detecting poisoning attacks may also necessitate additional
communication, although some approaches eliminate this need [19]. Integrating privacy-
enhancing technologies into DFL systems can also significantly influence communication
efficiency, as the pursuit of stronger privacy guarantees usually involves increased com-
munication overhead or a reduction in overall system performance. Under multi-party
computation (MPC), each node splits its update into secret shares and distributes them
among a set of peers, which substantially increases communication overhead as multi-
ple messages have to be transmitted. However, more communication-efficient variants
have been proposed [21]. Differential privacy (DP) is most commonly applied locally:
Each node adds carefully calibrated noise to its model updates before sharing them
with peers, thus ensuring that individual data points cannot be inferred from the up-
dates. While this does not change the size of the model updates, it can lead to slower
convergence which, in turn, results in a higher number of training rounds to achieve ac-
ceptable accuracy. This effect can be reduced by using notions of DP that leverage the
properties of DFL to amplify privacy guarantees [24], [25]. When using homomorphic
encryption (HE), each node typically encrypts its local model updates and aggregation
is performed on the encrypted data. Encryption increases the size of model updates,
thereby increasing the communication cost. Furthermore, decentralized key manage-
ment, e.g., multi-key HE [26], requires the exchange of additional information, further
adding to communication overhead.

Data heterogeneity X communication efficiency Heterogeneous data distributions
between actors can cause local model parameters to converge at different stationary
points, thereby hindering global convergence [|79]. A straight-forward approach to ad-

67

dress this concern is to communicate in a dense network (e.g., construct a fully-connected
network topology with full device participation) and to increase the frequency of syn-
chronization among the actors (i.e., lower the number of local updates). This, however,
conflicts with the challenge of communication efficiency, causing communication cost to
spiral up drastically. Therefore, there exists a general trade-off between communica-
tion efficiency and the challenge of data heterogeneity. Work to optimize this trade-off
includes the development of specific aggregation methods [31], [32], [38], the design of
heterogeneity-aware network topologies [159], and the consideration of data heterogene-
ity for partial device participation [28], [38], [92]. However, some of these approaches
impose tight assumptions on the DFL scenario (e.g., assuming knowledge about the
distributions of labels at other actors [159]), or even contradict the DFL paradigm by
exchanging data (e.g., sharing synthetic data [32]). Others exchange supplementary
information among the actors to prevent their gradients from drifting apart (e.g., shar-
ing the training loss [28], [38] or estimated consensus distances [92] to aid the partial
device participation strategy). Such supplementary information is typically in an aggre-
gated state and significantly smaller than a gradient or a full set of model parameters.
Hence, exposing aggregated statistics about the current state of the actor to detect gra-
dient drifts emerges as a promising direction to avoid frequent synchronizations when
addressing data heterogeneity. The main challenge here is to correctly detect gradient
drifts based on the aggregated statistics. This detection method could then be applied to
methods such as local computation (see Section , partial device participation (see
Section , or other DFL constituents to dynamically prevent actors from diverging.

System heterogeneity X communication efficiency The most common approach to
overcome the problem of stragglers, arising from differences in computing and communi-
cation resources among actors, is to enable asynchronous [37], [38] or semi-synchronous [39)
training. However, this leads to an increase in communication overhead compared to
synchronous DFL, as discussed in Section [£.2.2] Moreover, asynchronous and semi-
synchronous DFL systems need to account for stale model updates. A standard ap-
proach to mitigating the effects of staleness is to either exclude outdated model updates
from the aggregation or to incorporate the updates with reduced weights, for example by
assigning an advancement-dependent weighting factor in the aggregation rule [37]. This,
in turn, leads to considerable communication overhead, as these model updates have
been transmitted but are then not used to their full extent. Consequently, a fundamen-
tal trade-off arises between the challenges of communication efficiency and the challenge
of system heterogeneity. The more we optimize a DFL application for communication
efficiency, the more leeway we give to the problem of stragglers—and thus potentially
undermine a slow actor. Conversely, if the DFL system focuses on overcoming the prob-
lems of system heterogeneity, the transmitted information is not fully exploited, thereby
introducing redundant communication overhead.

68

5. Dynamic Synchronization Rule:
Gradient Thresholding

5.1. Introduction

In FL, each device periodically computes an update to its local model parameters, which
is then transmitted over the network and incorporated into the model parameters of other
nodes. This exchange of model updates forms the main source of communication cost.
Synchronous DFL and semi-synchronous DFL (see Section comprise strict syn-
chronization points that trigger the exchange of model updates on all actors. Therefore,
each synchronization point generates an associated increase in communication cost.

Reducing the frequency of model update exchanges is an effective technique to address
the challenge of communication efficiency in DFL. However, periodic sharing of model
updates is crucial to achieve convergence and foster collaboration between devices. It is
therefore important to choose synchronization points wisely in order to maintain con-
vergence while keeping communication to a minimum. Additionally, the heterogeneous
nature of the datasets of individual actors in real-world deployments demands great re-
sponsiveness to suddenly divergent actors. This raises the challenge of minimizing the
number of synchronization points while maintaining convergence, enabling collaboration,
and reacting to divergent actors.

In this chapter, we propose Gradient Thresholding—a novel synchronization rule to
tackle this challenge in the setting of synchronous DFL with a fully-connected network
topology. Motivated by the importance of finding a universally applicable method to ad-
dress this challenge, we investigated the evolution of gradients (i.e., updates to the model
parameters) during training [160]. The observation that—with small enough learning
rate—gradients follow a certain direction in the parameter space ignites the idea of de-
tecting divergent actors based on a deviation from their previous path in the parameter
space. Therefore, we construct a region in the parameter space to delimit the area in
which actors are allowed to enhance their model parameters without requiring synchro-
nization with other actors. We call this area the threshold region. The position and
extent of the threshold region depend on the previously synchronized gradients and are
therefore the same speculative measure for all actors. As long as the model parameters
of the individual actors remain within this threshold region, we presume that the actors
follow a common training path, and thus do not need to synchronize with each other.
As soon as an actor surpasses the threshold region, however, it might have diverged
from the other actors and, thus, triggers synchronization between the actors. Thereby,
Gradient Thresholding eliminates redundant synchronization points while reacting to di-
vergent actors. Our experiments demonstrate that Gradient Thresholding outperforms
four baseline in several cases.

69

5.2. Background, Challenges, and Related Work

5.2.1. Challenges

Communication Cost Minimization Synchronizing the model parameters among ac-
tors requires exchanging the respective model updates over the network, which incurs
communication cost. Therefore, the number of synchronizations must be reduced to
minimize communication cost. However, synchronization of model parameters prevents
actors from striving for different optima (i.e., actor drift) and, thus, ensures convergence.
Insufficient synchronization during the DFL process jeopardizes convergence, while ex-
cessive synchronization causes the communication cost to skyrocket. This trade-off raises
the open research challenge to find the optimal synchronization points.

Divergence Detection A straight-forward approach to the challenge of minimizing
communication cost is to synchronize the model parameters as soon as the actors start
to diverge from each other in their local model parameters. Divergent model parameters
are caused by actors optimizing toward different solutions due to their heterogeneous
data distributions. This scenario is also known as actor drift in DFL, client drift in
CFL, or concept drift. Whether different sets of model parameters diverge from each
other or strive for same optimum on displaced paths depends on the underlying loss
surface. Since the shape of this loss surface is unknown, it is hard to distinguish between
the two cases. Therefore, the challenge arises to detect actor drift.

Limited Communication In addition to the challenge of detecting and preventing actor
drift, there is the restriction in communication. Since our objective is to reduce the
communication cost in DFL, constantly comparing the actors’ model parameters to
check whether they diverge would induce unfavorable communication. Thus, the actor
is limited to the information that is communicated during the previous synchronization.
This complicates the detection of divergent model parameters considerably, as the actors
are unaware of the training progress made by their neighboring actors.

5.2.2. Related Work

Local computation (sometimes also referred to as local SGD or local-update SGD) is a
popular strategy to reduce the number of communication rounds in DFL. With local com-
putation, every actor performs multiple consecutive updates in-between synchronization
points instead of synchronizing after every local update [1], [112]. This strategy thereby
aims to optimize the trade-off between communication efficiency and performance. We
further detail the strategy of local computation in Section [4.3.2]

To skip communication rounds and, thus, reduce the number of synchronization points,
Chen et al. |161] proposed to reuse the lagged gradient if the new gradient did not change
much (slowly-varying). They present two different approaches for detecting qualifying
gradients: “LAG-WK” and “LAG-PS”. Despite the fact that this approach depends on
a central server, both approaches conflict with our challenge of limited communication.
In “LAG-WK?”, the server needs to broadcast the current model parameters to the nodes
in every epoch, so that the nodes can decide whether their gradient should be updated
on the other nodes. In “LAG-PS”, on the other hand, the central server obtains the

70

estimated smoothness constant of the local objective functions from all nodes in every
round, implying additional communication.

Zhang et al. [162] proposed the Adaptive Synchronous Parallel Strategy, which also
involves a central server, but could be adapted to DFL with a lightweight coordinator.
In their strategy, a synchronization barrier, controlled by the central server, prevents the
nodes from synchronizing in every round. The server constantly monitors the system
performance and iteration counts of the nodes to open the synchronization barriers
only if a node exceeds certain thresholds based on the staleness and weakness of its
model. However, consistent performance monitoring requires the transmission of the
corresponding information, which conflicts with the challenge of limited communication.
Additionally, this strategy is not designed to address client drift caused by heterogeneous
datasets among the nodes.

Kamp et al. [163] proposed a protocol for CFL to reduce the number of synchro-
nizations while quickly adapting to concept drifts. To achieve this, each node monitors
the euclidean distance between its local model parameters and a reference model that
is common among all nodes (i.e., the model parameters after the most recent synchro-
nization). As soon as this distance exceeds a given threshold value, the coordinator
performs a partial synchronization—trying to find an averaged model that falls within
the threshold—or a full synchronization, which also updates the reference model. How-
ever, this approach is based on the distance to the reference model and, hence, triggers
synchronization even if the individual model parameters are similar but evolving away
from the reference model.

Theologitis et al. [164] approaches this problem by considering the variance of the local
model parameters in CFL. To estimate this variance, however, information about all local
model parameters is needed. This, in turn, requires additional communication from the
clients to the server. Although they provide solutions for estimating the variance with
minimal communication needed, adding additional communication still conflicts with
our challenge of limited communication.

Our approach—Gradient Thresholding—addresses all three of the above challenges
simultaneously. To our knowledge, this is the first approach for DFL that tackles all
of these challenges. Yet, there are overlaps with related work. Similarly to Zhang et
al. [162] and Kamp et al. |[163], Gradient Thresholding uses a threshold that triggers
synchronization of all participants when exceeded. The main difference in this regard
is that Gradient Thresholding monitors compliance with the threshold on each device
individually, whereas the other approaches do so centrally, taking into account multiple
devices. As in Kamp et al. [163], the threshold in Gradient Thresholding is based on the
distance to the model parameters.

5.3. Methodology

Gradient Thresholding aims to minimize the number of synchronization steps while
ensuring convergence of the participating devices. To achieve this, we only perform
synchronization when apparently necessary, adapting to emerging disparities between
the devices (i.e., actor drift). However, the fact that devices are isolated from each
other except during synchronization poses the challenge of detecting disparities without
communication between devices. To overcome this challenge, our approach exploits the

71

information exchanged during synchronization to construct a threshold region in the
parameter space. This threshold region defines the zone in which the devices are allowed
to train their models independently (i.e., without synchronization). As a result, each de-
vice performs multiple model updates until their model parameters exceed the threshold
boundary. When the threshold region is exceeded on a particular device, the device calls
for synchronization. This triggers the synchronization of model parameters across all
devices, resulting in synchronized model parameters and a new threshold region, which
are the same for each device. Thereafter, the devices continue their independent training
until a violation of the new threshold triggers the next synchronization. This process
repeats until a certain stopping criterion (e.g., reaching the maximum number of epochs)
is met. By applying Gradient Thresholding, we can react to divergent actors without
the need for constant information exchange. Consequently, we omit synchronizations
as long as the devices seek the same optimum, eliminating the communication cost of
exchanging model parameters for redundant synchronization.

5.3.1. Threshold Region

The threshold region defines the zone in the parameter space in which actors can update
their model parameters without requiring synchronization. We construct the threshold
region based on the forecast of the next synchronized gradient, the number of epochs
since the last synchronization, and the hyperparameter to control the extent, the decay,
and the direction momentum. Since the threshold region spans only a small portion of
the whole parameter space, proper design of the threshold region is crucial to perform
multiple consecutive updates autonomously on the devices. If we specify the threshold
region too tight or in the wrong direction, the devices quickly exceed its boundary,
leading to frequent and unnecessary synchronization steps. Conversely, if we specify the
threshold region too broad, synchronization is performed rarely and, thus, the model
parameters at the devices could diverge drastically. The following paragraphs elaborate
on the key aspects that characterize the threshold region.

Threshold Center The center of the threshold region defines the direction in which the
threshold region extends, and influences the overall size of the region. In other words,
the threshold center represents the position in the parameter space around which the
devices can train independently without synchronizing with each other. Hence, this cen-
ter reflects the expected parameter state for the next parameter synchronization. To
construct the threshold center, we forecast the direction of the upcoming synchronized
gradient by applying an exponentially weighted moving average on the lagged direc-
tions of the synchronized gradients, as shown in Equation Here, the accumulated
gradient since last synchronization for actor ¢ is denoted as g?, and the k-th synchro-
nized (i.e., averaged) gradient of all actors is denoted as g(zk) accordingly. We compute
the k-th gradient forecast é(k) as the sum of the current synchronized gradient direc-

tion %/)%"2 weighted by g and the direction of the (k — 1)-th gradient forecast

Q~(k_1) / Hg~(k_1)H2 weighted by (1 — 6g). The coefficient 63, with a value between 0 and

1, represents the degree of weighting decrease for the exponential moving average. The
resulting vector is scaled to the same length as the current synchronized gradient Q(Ek)

72

using the euclidean norm ||-||,. Through these calculations, we obtain a forecast for
the direction of the next synchronized gradient. This forecast forms the center of our
threshold region.

Gy = ng H <95H g(Z - eﬁ)g“> E>1 (5.1)

gk 1) k)H ||g(k ol

H%H

Threshold Extent Building on the center of our threshold region, we define the region
itself. The distance between the current synchronized gradient and the threshold center
is exactly the length of the synchronized gradient. Therefore, the threshold region should
span at least the length of the synchronized gradient in the corresponding direction to
include the current state. Our threshold region is composed of two components: the dis-
tance along the line spanned by vector of the gradient forecast G (the projected distance)
and the distance orthogonal to it (the projection distance). Considering these two com-
ponents, we construct a cylindrical threshold region with its main axis in the direction
of the gradient forecast. We set the threshold for the projected distance to the length
of the synchronized gradient. Thus, the threshold region extends from the synchronized
gradient to the threshold center and the equivalent length beyond the threshold center.
To avoid entering a state of permanent synchronizations, we additionally apply the fac-
tor p=1+ k_—lks to this threshold, where k is the current epoch and kg is the epoch of
the previous synchronization. Thereby, we allow the threshold for the projected distance
to increase by up to twice the size, depending on the frequency of synchronizations. The
threshold for the projection distance controls the width of the cylindrical threshold re-
gion. To account for different magnitudes in the model parameters when applying this
threshold, we leverage a weighted euclidean distance. The weights W of this distance
are determined based on the gradient forecast, essentially penalizing dimensions that
show little change stronger than dimensions that show significant change. This weighted
distance is further detailed in a separate paragraph below. Given that the weighted
distance penalizes the dimensions according to the change in the gradient forecast, we
set both the projected threshold and the projection threshold to depend on the length
of the gradient forecast. On top of that, we introduce the hyperparameter 6, that al-
lows further scaling of the projection distance threshold. Adjusting this hyperparameter
is analogous to setting the sensitivity of the threshold region. Given a specific gradi-
ent G in the parameter gradient space, the two thresholds are defined in Equation

Here, proj 4] (G) = g—gé denotes the orthogonal projection of gradient G onto the line

spanned by the gradient forecast 5, and |||, denotes the weighted euclidean distance
with weights W.

i @ -, < (1+ =) [,
Jo-vreig @), <0 (1+ =) [,

73

The resulting threshold region is visualized in Section by means of a simplified
experiment.

Threshold Decay To prevent the actors from diverging to different local optimums
which lie inside the threshold region, we decrease the threshold width in every epoch.
This resolves two concerns in Gradient Thresholding. First, the exponential decay en-
sures that synchronization will definitely occur again at some point in time. Thus, it
addresses the case of actors that slow down drastically during training due to flatter ar-
eas in the loss landscape. Second, the synchronized gradient point disappears from the
threshold region after a few rounds of training. While this does not sound particularly
advantageous at first, it responds to the case where actors find a local optimum around
the synchronized gradient and helps to re-adjust the threshold extent when needed. Gra-
dient Thresholding applies the threshold decay to the threshold region in the form of a
factor multiplied to both threshold components (i.e., the projected distance threshold
and the projection distance threshold). The decay factor is specified by means of the
hyperparameter 6, and lies in the range 6, € (0, 1].

Weighted Distance The elements of the model parameters show different sensitivities
and magnitudes with respect to the performance of the model. Thus, making a small
change on a sensitive parameter element could have a significant impact on model per-
formance, whereas making the same change to an insensitive parameter element would
have little effect. Therefore, distances in the parameter space must take into account the
sensitivity of parameter elements. The simplest solution to overcome this issue would
be to scale the parameter space according to the individual sensitivities of its dimen-
sions. However, these sensitivities are unknown. We therefore calculate distances in the
parameter space using a weighted euclidean distance. The weights are determined on
the basis of the forecast gradient, which serves as a reference for the expected param-
eter sensitivities. Parameter elements that experience little change in the forecast are
assumed to have higher sensitivity than elements that experience substantial change.
Thus, we penalize sensitive parameters more than insensitive parameters by specifying
the weights as the element-wise inverse of the absolute change in the forecast gradient.
However, since certain model parameters might also remain constant in our forecast, the
weights pose the problem of over-penalizing sensitive elements. Given the observation
that elements in the same layer of a neural network are interdependent, we therefore
limit the weights to a maximum of their layer-wise median. Equation [5.3] shows the
complete calculation of the weights W for our weighted euclidean distance based on
the forecast gradient G, with A°~! being the Hadamard inverse of matrix A, Al being
the element-wise transformation to absolute values, max,(A, s) being the element-wise
maximum of matrix A and scalar s, and med(A) being the median of the elements in
matrix A.

W = max (G, med (G1)) (5.3)

74

5.3.2. Algorithm

Using the threshold region defined in Section [5.3.1) we define the synchronization rule
of Gradient Thresholding. In this section, we provide the pseudo-code of the complete
system and discuss in which aspects it differs from common DFL systems.

Learning Protocol Algorithm [I] provides the main protocol of our DFL learning pro-
cess. The first loop on Algorithm [1] line [2] initialized the variables at the actors. In
addition to the usual initialization of model parameters, we initialize the required state
variables, including the accumulated gradient QZ-E, the forecast gradient 5, the variable
holding the epoch index of the last synchronization t,, and the threshold extent p. Af-
ter completion of the initialization, the main training loop starts (Algorithm (1] line ,
which is performed by all actors in parallel. In addition to computing and applying the
gradient as an update to the model parameters like in common DFL schemes, each actor
keeps track of its accumulated gradient QZZ since last synchronization and checks in every
iteration if it needs synchronization (Algorithm line . If synchronization is required,
the actor synchronizes with other actors, resets its state variables, and updates the local
model parameters. If none of the actors requires synchronization, the threshold extent
is decayed as described in Section |5.3.1l This loop is repeated for the desired number of
epochs.

Synchronization Rule As mentioned above, each actor checks in every round if synchro-
nization is required. This check is performed with RequiresSynchronization, provided
in Algorithm [2| This function verifies whether a given accumulated gradient exceeds the
boundaries of the threshold region (defined in Section and returns the result as
true or false, respectively. To achieve this, the projected distance (Algorithmlines
7) and the projection distance (Algorithm [2| lines are calculated and compared
against the corresponding threshold. Both distances must fall below the threshold value
if the accumulated gradient is within the threshold region. Otherwise, the respective
actor requires synchronization. As mentioned in Section the projection distance
is calculated using a weighted euclidean distance. The weights for this distance are
obtained from the function ComputeDistanceWeights in Algorithm

Parameter Synchronization When an actor requires synchronization, the synchro-
nization step is triggered for all actors. We outline the involved operations in Algo-
rithm Initially, each actor exchanges the accumulated gradient with other actors
(Algorithm (4] lines . The synchronization procedure then aggregates the individual
accumulated gradients of all actors to obtain a common gradient (Algorithm [4| line ,
which is then applied to the model parameters from the previous synchronization to
obtain the synchronized model parameters (Algorithm [4fline |5)). Furthermore, this pro-
cedure also computes the updated forecast gradient (Algorithm 4] lines , following
the definitions in Section Together, this procedure results in a global set of model
parameters and in an updated forecast gradient, both of which are common among the
actors.

75

Algorithm 1 Gradient Thresholding Protocol

Input: number of epochs T, learning rate 7, threshold extent factor 6,, threshold extent
decay 0,

1: Initialize reference model parameters Mg to initial state.

2: for all i € N do in parallel

3 M; — Mp > Initialize model parameters to common initial state.
4 Qiz ~0 > Initialize accumulated gradient to zero gradient.
5: G+o0 > Initialize forecast gradient to zero gradient.
6 ts +— —1 > Initialize epoch of last synchronization.
7 p< 0 > Initialize threshold extent.
8: end for

9: fort=1to 7 do

10: for all i € A do in parallel

11: G; + ObtainGradient(M;, D;)

12: M, < ApplyGradient(M,, G;,n)

13; GF G +Gi

14: if t == 1 OR RequiresSynchronization <§, giE, o Qp) then > Alg.
15: Mg, G Synchronize(Mg, G, g, n) > Alg.
16: M; +— Mg

17: QZ-E +—0 > Reset accumulated gradient.
18: p (1 + i) > Reset threshold extent.
19: ts 1 > Reset last synchronization epoch.
20: else
21: p < Oap > Decay threshold extent.
22: end if
23: end for
24: end for

76

Algorithm 2 Gradient Thresholding: Synchronization Rule

Input: forecast gradient G , local accumulated gradient gE, threshold extent p, threshold
extent factor 0,
Output: boolean flag indicating if synchronization is needed
1: function REQUIRESSYNCHRONIZATION(G, G°, p, 0,)

.6~
2: proj 4] (gf) — ggi. g~g g > Projection onto forecast gradient line.
3: dgax —p- HGV H2 > Max. distance to forecast gradient.
4: dg — Hproj 4] (QZE) -G H > Projected distance to forecast gradient.
2
5: if dg > dg;ax then
6: return true > Projected distance exceeds threshold.
7: end if
8: W « ComputeDistanceWeights(G)
9: AP 0, -p- ’5 HW > Max. distance to forecast gradient line.
10: dp Hgf — proj 4] (ng)H > Projection distance to forecast gradient line.
w
11: if dp > d7** then
12: return true > Projection distance exceeds threshold.
13: end if
14: return false > Accumulated gradient is within threshold region.

15: end function

Algorithm 3 Gradient Thresholding: Distance Weights

Input: estimated gradient §

Output: distance weights W

1: function COMPUTEDISTANCEWEICHTS(G)

2 W « abs(G)

3 for [=1 to #layers do > For each layer.
4 for all w; € layer(l, W) do > For each value of the layer.
5: w; <— max (med(layer(l, W)), w;) > Cap weights by layer median.
6 end for

7 end for

8 W«1/W

9: return W

10: end function

77

Algorithm 4 Gradient Thresholding: Synchronization

Input: reference model parameters Mg, local accumulated gradient g}, forecast gra-
dient G , learning rate 7, exponential moving average coefficient 05
Output: Mp averaged model parameters, G forecast gradient
1. function SYNCHRONIZE(Mg, G, G, 7, 63)
2: Send: Qiz to other devices
3: Receive: {QJE }jea\(sy from other devices

G Dien 07 -
5: Mg < ApplyGradient (MR, Gg=, 7]>

if G == 0 then
G« G*
else o
_ G= __ -
_ g 2
= Y :
10: end if B
11: return Mp, G

12: end function

78

5.4. Experiments

To verify Gradient Thresholding, we have conducted experiments with several datasets,
model architectures, and configurations. In this section, we clarify the common ex-
perimental setup (Section and present the results of our experiments. These
experiments include (1) the comparison with baselines (Section [5.4.2)), (2) the investi-
gation of the distance to our threshold region (Section [5.4.3)), (3) the visualization of
the parameter space during training in a simplified scenario (Section , and (4) the
assessment of variability across different hyperparameter choices. The implementation
for conducting these experiments is publicly available on GitHuHH

5.4.1. Experimental Setup

Dataset For our experiments, we consider three datasets for classification tasks with
different complexities, namely the Iris dataset [165], the Mnist dataset [166], and the
cropped version of the Street View House Numbers (SVHN) dataset [157]. We divide
the datasets into train, validation, and test set in the following way: We split the Iris
dataset randomly with a ratio of 90% : 10% to obtain train and test set, respectively, and
sliced another 10% from the train set to obtain the validation set; for the Mnist dataset,
we take the train with 60000 records and the test set with 10000 records as provided
by TensorFlow [65], and randomly slice another 10% from the train set to obtain the
validation set; and for the SVHN dataset, we take the train set with 73257 records and the
test set with 26032 records as provided by TensorFlow Datasets [66], and randomly slice
10% from the train set to obtain the validation set. We then partition the train sets using
Dirichlet partitioning into the same number of partitions as there are actors. While the
resulting partitions are balanced in size, using the Dirichlet partitioning scheme allows us
to control the heterogeneity between the partitions through the concentration parameter
« from the Dirichlet distribution. Conceptually, « controls the imbalance of categorical
labels across partitions, with @ — oo approximating identical distributions and o — 0
resulting in completely imbalanced distributions. In our experiments, this parameter
was set to a = 0.05 for the Iris dataset, a = 0.25 for the Mnist dataset, and o = 0.25 for
the SVHN dataset.

Model Aligned with the three datasets, we conduct the experiments with three different
model architectures—one for each dataset. For the three-class classification task on the
Iris dataset, we construct the neural network model similarly to the tutorial blog post
by Jason Browniee [167]. This model consists of a dense layer of neurons with 8 units
using the rectified linear unit activation function, followed by a dense layer with 3 units
and a softmax activation function to represent the probabilities of the output labels.
We provide the model architecture in Table For the image classification task on
the Mnist dataset and on the SVHN dataset, we construct two different convolutional
neural network models. The model architectures are provided in Table for Mnist and
Table for SVHN. Both models take an image as input (grayscale for Mnist and colored
for SVHN) and output the probabilities for the class labels. The model architecture for
the SVHN dataset was adopted from a notebook on Kaggle by Dimitrios Roussis [168].

!Gradient Thresholding GitHub repository: https://github.com/ywcb00/GradientThresholding/
tree/v0.1.1

79

https://github.com/ywcb00/GradientThresholding/tree/v0.1.1
https://github.com/ywcb00/GradientThresholding/tree/v0.1.1

Layer Type \ Output Shape \ # Parameters \ Configuration

Input layer 4 0 None
Densely-connected layer 8 40 ReLU activation
Densely-connected layer 3 27 Softmax activation

Table 5.1.: Model architecture of the neural network model for the classification task on
the Iris dataset.

’ Layer type ‘ Output Shape ‘ # Parameters ‘ Configuration
Input layer 26 x 26 0 None
. 3 x 3 kernel
2D convolution layer 26 x 26 x 32 320 ReLU activation
2D max pooling operation | 13 x 13 x 32 0 2 x 2 pool
. 3 x 3 kernel
2D convolution layer 11 x 11 x 64 18496 ReLU activation
2D max pooling operation 5 X Hx64 0 2 x 2 pool
Input flattening 1600 0 None
Dropout layer 1600 0 50% drop rate
Densely-connected layer 10 16010 Softmax activation

Table 5.2.: Model architecture of the convolutional neural network model for the classi-
fication task on the Mnist dataset.

We use the stochastic gradient descent optimizer (SGD) with categorical cross-entropy
loss function for the Iris and Mnist model, and adopt the adaptive moment estimation
optimizer (ADAM) with sparse categorical cross-entropy loss function for the SVHN
dataset. For more detailed information about the model architectures, please refer to
the open-source implementation.

General Configuration In addition to the dataset and the model architecture, our
experiments rely on the following general configurations:

1. Number of Epochs: Throughout the experiments, the total number of epochs to
train is set to 100 for the Iris dataset, 20 for the Mnist dataset, and 50 for the SVHN
dataset. While these numbers are not tuned to achieve the best performance, we
fixed them before conducting the experiments and did not tweak them to improve
the results.

2. Learning Rate: We set the learning rate of the optimizer to 0.1, 0.2, and 0.0002
for the Iris, Mnist, and SVHN dataset, respectively. These values result from a
grid search with various learning rates and are chosen based on the corresponding
validation loss. We provide the results of the grid search in Appendix

3. Batch Size: The batch size was set to 32, 256, and 128 for the Iris, Mnist, and
SVHN datasets, respectively. Similar to the number of epochs, we determined these
values before conducting the experiments and did not change them afterwards.

4. Number of Actors: Unless otherwise specified, we conducted the experiments using

a network of 8 actors for the Iris dataset and a network of 4 actors for both the
Mnist and the SVHN datasets.

80

Layer type \ Output Shape \ # Parameters \ Configuration
Input layer 32x32x3 0 None
. 3 x 3 kernel
2D convolution layer 32 x 32 x 32 896 ReLU activation
Batch normalization 32 x 32 x 32 128 None
. 3 x 3 kernel
2D convolution layer 32 x 32 x 32 9248 ReLU activation
2D max pooling operation | 16 x 16 x 32 0 2 x 2 pool
Dropout layer 16 x 16 x 32 0 30% drop rate
. 3 x 3 kernel
2D convolution layer 16 x 16 x 64 18496 ReLU activation
Batch normalization 16 x 16 x 64 256 None
. 3 x 3 kernel
2D convolution layer 16 x 16 x 64 36928 ReLU activation
2D max pooling operation 8 x 8 x 64 0 2 x 2 pool
Dropout layer 8 x 8 x 64 0 30% drop rate
. 3 x 3 kernel
2D convolution layer 8 x 8 x 128 73856 ReLU activation
Batch normalization 8 x 8 x 128 512 None
. 3 x 3 kernel
2D convolution layer 8 X 8 x 128 147584 ReLU activation
2D max pooling operation 4 x4 x128 0 2 X 2 pool
Dropout layer 4 x4 x128 0 30% drop rate
Input flattening 2048 0 None
Densely-connected layer 128 262272 ReLU activation
Dropout layer 128 0 40% drop rate
Densely-connected layer 10 1290 Softmax activation

5.4.2. Baseline Comparison

Table 5.3.: Model architecture of the convolutional neural network model for the classi-
fication task on the SVHN dataset.

Gradient Thresholding tries to optimize the trade-off between communication efficiency
and performance. Therefore, the key performance indicator is given by the interaction
of the loss and the number of synchronizations. We conducted experiments to compare
Gradient Thresholding with the following four baselines:

e Baseline 1: Standard DFL with synchronization after every local update.

e Baseline 2: Local computation with a low number of 2 local updates per commu-

nication round.

e Baseline 3: Local computation with a medium number of 5 local updates per

communication round.

e Baseline J: Local computation with a high number of local updates per commu-
nication round; 10 local updates for the Cifar and SVHN datasets, and 8 local

updates for the Mnist dataset.

81

The hyperparameter 6, that controls the sensitivity of Gradient Thresholding, as de-
scribed in Section has been selected considering the validation loss in experiments
with various values for 6,. Based on these evaluations, we set the parameter at 0, = 2
for the Iris dataset, 6, = 1.75 for the Mnist dataset, and 6, = 2 for the SVHN dataset.
We provide the numeric results of these experiments in Appendix

We trained the baselines and Gradient Thresholding using the respective hyperparam-
eter 6,, and the configurations described in Section Since data partitioning and
model initialization are random, we performed these experiments using four different
seed values. During this process, we recorded the test loss and the number of synchro-
nizations for each approach and each dataset. The results are provided in Table for
the Iris dataset, Table [5.5] for the Mnist dataset, and Table [5.6] for the SVHN dataset.

Considering the results for the Iris dataset in Table Gradient Thresholding clearly
outperforms the baselines for seeds 668 and 669. For seed 667, however, Baseline 3 out-
performs Gradient Thresholding, as it requires fewer synchronizations to achieve a lower
loss. The results with a seed value of 666 do not allow for a definitive comparison, since
Gradient Thresholding performs better than Baseline 1 but worse than Baseline 2. In
the results for the Mnist dataset in Table[5.5] Gradient Thresholding clearly outperforms
the baselines for all seed values. For seed 666, Baseline 3 and Baseline 4 fail to minimize
the loss, while Gradient Thresholding achieves a lower loss with fewer synchronizations
than Baseline 2. In the results for the SVHN dataset in Table[5.6, Gradient Thresholding
achieves better results than the baselines for seed values 666 and 667. The results for
seed 668 and seed 669, however, do not allow direct comparisons, as Gradient Thresh-
olding positions itself in-between baselines with both the loss value and the number of
synchronizations.

Figure p.1} Figure 5.2 and Figure demonstrate the results for the Iris, Mnist,
and SVHN datasets, respectively. To facilitate visual comparison, we present the ra-
tios to the results of Gradient Thresholding for both the loss (y-axis) and the number
of synchronizations (x-axis). Thus, all results of Gradient Thresholding are located at
position (1,1) and the values of the baseline experiments show the loss and the number
of synchronizations relative to Gradient Thresholding. Making this transformation into
ratios also allows us to define all experiments within the unit square from the origin to
the results of Gradient Thresholding as clearly outperforming Gradient Thresholding.
Although three results from the baseline experiments on the Iris dataset fall within this
area, the other baseline results are clearly outside of this unit square area. Furthermore,
none of the baseline results clearly outperforms Gradient Thresholding in the experi-
ments on the Mnist and SVHN datasets. Hence, the concept of Gradient Thresholding
proves at least equally effective as the baselines. Moreover, the baseline results that
show a higher loss and more synchronizations than Gradient Thresholding indicate the
superiority of Gradient Thresholding.

In addition to recording the final test loss with the corresponding number of synchro-
nizations, we tracked the test loss during training at each synchronization in Gradient
Thresholding. We visualize the results for seed 667 with the SVHN dataset in Fig-
ure 5.4 This visualization shows that Gradient Thresholding positions itself in-between
Baseline 2 and Baseline 3 in terms of the number of synchronizations, while achieving the
best loss among all experiments. Additional visualizations of this type for the different
datasets and seed values are provided in Appendix [A73]

82

Exp. SEED 666 SEED 667 SEED 668 SEED 669
Loss Sync. Loss Sync. Loss Sync. Loss Sync.
BL1 | 0.539029 100 | 0.501504 100 | 0.474516 100 | 0.487596 100
BL2 | 0.515485 51 0.563500 51 0.508835 51 0.450143 51
BL3 | 0.516858 21 0.556961 21 0.609173 21 0.481423 21
BL4 | 0.578848 11 0.681120 11 0.776382 11 0.523183 11
GT | 0.526247 92 0.587449 28 0.473216 90 0.385178 90

Table 5.4.: Test loss and number of synchronizations (‘Sync.”) for the baseline (BL) and

Gradient Thresholding (GT) experiments (‘Exp.”) on the Iris dataset over
different seeds. Gradient Thresholding clearly outperforms the baselines in
the cases shaded in green, while it is inferior to the baselines in the case
shaded in red.

Exp. SEED 666 SEED 667 SEED 668 SEED 669
Loss Sync. Loss Sync. Loss Sync. Loss Sync.
BL1 | 0.232185 20 0.285152 20 0.205982 20 0.497485 20
BL2 | 0.386331 11 0.296058 11 0.206932 11 0.458328 11
BL3 | 2.451042 5 0.291849 5 0.246449 5 0.542560 5
BL4 | 2.435904 4 0.331246 4 0.258262 4 0.599970 4
GT | 0.359094 8 0.319479 4 0.231651 5 0.545842 4

Table 5.5.: Test loss and number of synchronizations (‘Sync.”) for the baseline (BL) and

Gradient Thresholding (GT) experiments (‘Exp.’) on the Mnist dataset over
different seeds. Gradient Thresholding clearly outperforms the baselines for
all seed values.

Exp. SEED 666 SEED 667 SEED 668 SEED 669
Loss Sync. Loss Sync. Loss Sync. Loss Sync.
BL1 | 0.426264 50 0.417600 50 0.378228 50 0.395136 50
BL2 | 0.437644 26 0.383815 26 0.378151 26 0.373628 26
BL3 | 0.418537 11 0.365922 11 0.425989 11 0.427693 11
BL4 | 0.473795 6 0.401534 6 0.479799 6 0.505273 6
GT | 0.417503 31 0.358765 16 0.380986 23 0.374048 21

Table 5.6.: Test loss and number of synchronizations (‘Sync.’) for the baselines (BL)

and Gradient Thresholding (GT) experiments (‘Exp.’) on the SVHN dataset
over different seeds. Gradient Thresholding clearly outperforms the baselines
in the cases shaded in green, while the unshaded cases do not provide clear
indications of the superiority.

83

A Experiment ® BLi ® BL2 e BL3 ® BL4 GT
n !
Re] . I
T 15 higher : Seed ® 666 A 667 W 668 + 669
o loss I
> +
S L]
c A +
91_0 & ok [S B e i I RN
O a
©
Q
S : >
o lower loss and. : more synchronizations
2 5| fewer synchronizations :
5 i
(@]
0.0 f
0 1 2 3

Synchronization Ratio

Figure 5.1.: Comparison of the experimental results on the Iris dataset of Gradient
Thresholding (GT) to the baselines (BL) over multiple seeds. Both axes
are scaled relative to the result of Gradient Thresholding. The x-axis shows
the relative number of synchronizations and the y-axis shows the relative
test loss. The unit square from the origin to (1,1) (shaded in red) marks
the area in which the baselines definitely outperform Gradient Thresholding.

® -
Experiment © BL1 e BL2 e BL3 e BL4 GT
6 :
.9 :
§ N Seed ® 666 A 667 W 668 + 669
> :
a :
o :
& 4 [higher
) loss
o :
O :
© :
Q :
S :
22 :
® :
O :
...... lﬁ*o.$j
1 N
: more synchronizations -
0 i
0.0 2.5 5.0 7.5 10.0 12,5

Synchronization Ratio

Figure 5.2.: Comparison of the experimental results on the Mnist dataset of Gradient
Thresholding (GT') to the baselines (BL) over multiple seeds. Both axes are
scaled relative to the result of Gradient Thresholding. The representation
of visualized elements is identical to Figure @

84

Experiment © BL1 e BL2 e BL3 ® BL4 * GT

15 hligher
+ 0% Seed o 666 A 667 ®m 668 + 669
|
° A mt A
A
1.0 boeememnnns PSS A% ... - ® - +

Vv

lower loss and

fewer synchronizations more synchronizations

0.5

Sparse Categorical Crossentropy Ratio

0.0 ;
0 1 2 3

Synchronization Ratio

Figure 5.3.: Comparison of the experimental results on the SVHN dataset of Gradient
Thresholding (GT) to the baselines (BL) over multiple seeds. Both axes are
scaled relative to the result of Gradient Thresholding. The representation
of visualized elements is identical to Figure

Experiment
—— BL1
-+ BL2
- BL3
-~ BL4
GT

Sparse Categorical Crossentropy
-

0 10 20 30 40 50
Synchronizations

Figure 5.4.: Test loss of experiments on the SVHN dataset with seed value 667 over
the number of synchronizations for baselines (BL) and Gradient Threshold-
ing (GT).

85

5.4.3. Threshold Distance

In the experiment on Gradient Thresholding in Section [5.4.2] we recorded the distances
in our threshold region and the values of the two threshold components that characterize
the region, as explained in Section [5.3.1] Figure and Figure show the projected
distances of the individual actors with seed value 667 for the Iris dataset and the SVHN
dataset, respectively, and Figure [5.6| and Figure show the projection distances. Fig-
ure [5.5| clearly depicts that the local model parameters of the actors evolve towards the
threshold center, as the distance decreases. Often, the actors even pass the threshold
center, indicated by the consecutive increase in distance. This scenario is also visible in
Figure [5.7] Between the second and third synchronization points, for example, Actor 3
first approximates the threshold center before distancing itself again. Figure depicts
the projection distances, revealing diverse rates of deviation from the forecast gradient
line among actors. It demonstrates the progression of the actors’ model parameters to-
wards the lateral threshold boundary (dashed line) until an actor exceeds the boundary
and sparks the synchronization between the actors (dotted vertical line). Figure
shows the sensitivity of our threshold region to slowly-changing dimensions of the model
parameters, as the high peaks in distance are caused by heavily weighted dimensions in
the weighted distance. The synchronization points in all four figures demonstrate the
ability to train multiple consecutive rounds without synchronizing while staying inside
our threshold region. We provide identical visualizations for the Mnist dataset with seed
value 667 as well as for all datasets with seed value 666 in Appendix [A4]

86

10.0 o ~o

~
Actor
] —1-—5
8 - 3 — 7
c
f% — 4 — 38
o . ~
S 50" T~
% . : Distance Type
'%_) —— Projected Distance
. — = Distance Threshold
25
Synchronization Point
0.0 - : : Bt A A4 B B B
0 25 50 75 100

Epoch

Figure 5.5.: Projected distances of the individual actors in the experiment on the Iris
dataset with a seed value of 667. The dashed line represents the correspond-
ing threshold boundary, which triggers a synchronization when exceeded.
Synchronization points are indicated by dotted vertical lines. Starting from
epoch 76, the model parameters reach a state in which the actors constantly
diverge from each other and, thus, trigger synchronization in every round
due to exceeding the threshold of the projected distance or the projection

distance (see Figure .

300
Actor
— 1 — 5
— 2 — 6
8 200 — 3 — 7
c
g — 4 — 8
2
3
= Distance Type
2
%.) —— Projection Distance
100

— = Distance Threshold

Synchronization Point

Epoch

Figure 5.6.: Projection distances of the individual actors with the corresponding thresh-
old boundary (dashed line) under the same setting as in Figure

87

400

w
o
o

200

Weighted Distance

100

Actor
-] —=— 3

- 2 —— 4
Distance Type

—— Projected Distance

— = Distance Threshold

Synchronization Point

Figure 5.7.: Projected distances of the individual actors in the experiment on the SVHN

750

500

Weighted Distance

250

dataset with a seed value of 667. The dashed line represents the correspond-
ing threshold boundary, which triggers a synchronization when exceeded.
Synchronization points are indicated by dotted vertical lines.

Actor
-] —=— 3

- 2 —— 4
Distance Type

—— Projection Distance

— = Distance Threshold

Synchronization Point

10 20 30 40 50
Epoch

Figure 5.8.: Projection distances of the individual actors with the corresponding thresh-

old boundary (dashed line) under the same setting as in Figure

88

5.4.4. Parameter Space lllustration

To illustrate the concept of Gradient Thresholding more clearly, we performed an exper-
iment on a simpler dataset with a model that has only two parameters. This enables to
visualize the parameter space in two-dimensional space and, thus, opens the possibility
to plot the model parameters. In this experiment, we used the Salary dataset [169],
which is known for demonstrating simple linear regression. This dataset consists of 30
records with two features, namely salary as the target feature and years of experience as
the explanatory feature. We then construct a neural network that accepts the years of
experience as input and passes it to a single neuron with a linear activation function in
order to come up with the corresponding salary forecast. This results in a total of two
parameters, representing the intercept and the slope similar to a simple linear regression
model and allowing for interpretation of the parameters. We leverage the stochastic gra-
dient descent optimizer (SGD) to train the model. Since this experiment serves only for
illustration purposes, we do not aim at finding the optimal point. Instead, we optimize
the model with a significantly low learning rate so that the model parameters approach
the optimum slowly. With this setup, we run the learning procedure on four actors for
15 epochs using Gradient Thresholding, recording the state of the parameters at every
epoch. We then visualize the developing parameters of the individual actors by plotting
their state in the parameter space. We present these graphs for epochs 2, 6, 12, and 15
in Figure [5.9] Figure [5.10} Figure [5.11] and Figure [5.12] respectively.

Since the first epoch always synchronized the model parameters, the threshold region
of Gradient Thresholding is established and applied starting with epoch 2. Figure [5.9
shows how the individual actors train their model parameters towards the forecast pa-
rameters, starting from their common synchronized parameters from epoch 1. As the
model parameters do not exceed the threshold boundary, there is no need for synchro-
nization in epoch 2. This is the case until epoch 6, as shown in Figure [5.10, Here,
actor 1 and actor 2 exceed the threshold limits in their projected distance, triggering
the synchronization in epoch 6. Based on this synchronization, a new threshold region
is established. This region allows for multiple epochs without synchronizing again, until
the next transcendence of the threshold boundary. In contrast to epoch 6, this time the
model parameters did not develop through the whole threshold region and surpass it
on the opposite side. The parameters developed slower than the decay of the threshold
region and, therefore, did not manage to remain inside the threshold, as seen in Fig-
ure Subsequently, the actors synchronize with each other and update the threshold
region, which remains valid until the end of training in epoch 15. The last epoch of
a training procedure synchronizes the model parameters again, resulting in the final
parameter state of epoch 15 shown in Figure [5.12

89

Actor

5000 1
-¥- 2
-15- 3
g
3 -15- 4
9 2500
Synchronized
2 15 - Z Forecast
o
1 - Threshold
0

0 5000 10000 15000 20000
Intercept

Figure 5.9.: Model parameters of the individual actors after epoch 2 of the training pro-
cess under the simplified model and dataset, together with the synchronized
model parameters from the synchronization points, the forecast parameters
advanced by the gradient forecast, and the threshold region that surrounds
the forecast parameters. Numeric labels in the plot indicate the epoch of
the respective parameters.

Actor
5000 1
=-15=- 2
-¥- 3
g
g -15- 4
n
2500 5 - oA
st - i
. A 5T Synchronized
,Z:’ cET Forecast
1 - Threshold
0
0 5000 10000 15000 20000
Intercept

Figure 5.10.: Model parameters after epoch 6 with identical representations as in Fig-
ure[5.9] Actor 1 and actor 2 exceed the threshold region in epoch 6, trigger-
ing the synchronization between actors and resulting in new synchronized
model parameters.

90

Actor

5000 1
== 2
-¥- 3
])
Q e -15-
: xC o
2500 o
PR © -
v 2
. A ”’3,3r s Synchronized
7 /, L Forecast
T
1 \ Threshold
0
0 5000 10000 15000 20000

Intercept

Figure 5.11.: Model parameters after epoch 12 with identical representations as in Fig-
ure Note that the threshold region surrounds the forecast parameters
from the last synchronization. Actor 4 exceeds the threshold region in
epoch 12 due to the threshold decay, resulting in new synchronized model

parameters.
Actor
5000 1
== 2
-1~ 3
(] 2ALS.
o - 5=
o glé% 2} B4
n g
2500 . R 33*2
ZF
. A 5T o Synchronized
Ve ﬁ"“
P Forecast
7T
1 \ Threshold
0
0 5000 10000 15000 20000

Intercept

Figure 5.12.: Model parameters after completion of the training process in epoch 15,
showing the entire path of synchronized model parameters in the param-
eter space. Actors synchronize their model parameters in the final epoch
by default, yielding the final synchronized gradient. The illustrated com-
ponents are visualized identical to Figure

91

5.4.5. Variability Test

In Section and Section [5.4.3] we conducted experiments using fixed values for the
number of actors, the Dirichlet partitioning parameter «, and the learning rate. Here,
we examine the variability of the results for different values for these parameters. We
consider the SVHN dataset and the corresponding model as described in Section [5.4.1
We then perform experiments using Gradient Thresholding with 6, = 2, while varying
the number of actors, the Dirichlet parameter «, and the learning rates. Note that we
only change one parameter at a time and, thus, set the other parameters to 4 actors,
a = 0.25, and a learning rate of 0.0002 when they are not under test. These fixed param-
eters are equal to the experiments in Section [5.4.2] and Section [5.4.3] The resulting test
loss for the experiments with seed value 13 is presented in Figure Figure and
Figure for different numbers of actors, various Dirichlet partitioning parameters «,
and varying learning rates, respectively. We also provide the results for the experiments
with seed value 14 and seed value 15 in Appendix

The test losses for different numbers of actors (Figure indicate that the opti-
mization problem becomes more difficult with more actors. This is justified by the fact
that the size of the total dataset stays the same, thus an actor in the experiment with 32
actors holds eight times less data than an actor in the experiment with 4 actors. Due to
this greater complexity, the number of synchronizations and the resulting loss increase
with more actors. The experiment with 2 actors exhibits strong fluctuations in loss,
which is due to random partitioning, as confirmed by the results of the same experiment

with seed 14 (Figure [A.23).

Experiments with different parameters « for Dirichlet partitioning yield exactly the
results that we expect, the number of synchronizations conducted by Gradient Thresh-
olding aligns with the level of heterogeneity among the data distributions at the actors.
This is supported by Figure [5.14] and is perfectly in agreement with the concept of Gra-
dient Thresholding. The experiment with the highest parameter for « (i.e., the lowest
data heterogeneity) reaches the lowest loss value with the fewest synchronizations among
the experiments. This interactive trend is followed by all values of o down to the exper-
iment with o = 0.1, which achieves the highest final loss of all experiments after a total
of 38 synchronizations.

The results for different learning rates are also in line with our expectations, as well as
with the concept of Gradient Thresholding. As presented in Figure lower learning
rates demand fewer synchronizations between actors. This behavior is reasonable, since
the model parameters at the actors evolve slower and, hence, do not diverge as fast as
they would with higher learning rates. However, slower development also implies slower
approximation of the optimal model parameters, as clearly evident from the loss values
in Figure [5.15] Therefore, higher learning rates—as long as they are not too large—can
achieve better loss but raise the number of synchronizations. If the learning rate is too
high, the learning process faces problems with converging in general, as confirmed by
the experiment with the highest learning rate in Figure [5.15

92

Sparse Categorical Crossentropy

0 \ \ \ \
0 10 20 30 40

Synchronizations

Actors

16
32

L I B

Figure 5.13.: Test loss of experiments on the SVHN dataset with seed 13 for various

numbers of actors over the number of synchronizations.

i [/
i

[= N
o 3 o
| | |

Sparse Categorical Crossentropy

o
3]
|

0.0 ; ; T
0 10 20 30

Synchronizations

Figure 5.14.: Test loss of experiments on the SVHN dataset with seed 13 for various
values for the Dirichlet partitioning parameter o over the number of syn-

chronizations.

93

25

2

S 2.0

5

2 Learning
o Rate

O 15

= —o— 5e-05
2 —— le-04
% e
TR —=— 2e-04
*‘—5‘ .

o —— 5e-04
<]

&

IS

[oR

n

o
3

0.0
0 10 20 30 40

Synchronizations

Figure 5.15.: Test loss of experiments on the SVHN dataset with seed 13 for various
learning rates over the number of synchronizations.

94

5.5. Discussion and Future Work

In this chapter, we have explained the methodology of Gradient Thresholding and out-
lined its general algorithm. Our experimental findings confirm the concept of Gradient
Thresholding and its superiority over baselines. However, Gradient Thresholding is
based on a speculative forecast of the successive gradient and, therefore, does not pro-
vide theoretical guarantees regarding its applicability. Nevertheless, we can discuss the
behavior of Gradient Thresholding in two border cases:

1. If an actor advances the local model parameters beyond the threshold region in
every round, the actors synchronize their model parameters in each round. This
scenario increases the communication cost drastically, rendering Gradient Thresh-
olding equivalent to DFL training without communication-efficient techniques like
local computation.

2. If the threshold region is constructed to cover an excessive section of the parameter
space, the actors might train for a vast number of epochs without synchronizing.
The fact that the threshold region decreases in each epoch ensures that an actor
will eventually exceed the threshold. While this does not incur additional com-
munication cost, it wastes time and computing resources by performing redundant
training epochs.

Although we compare Gradient Thresholding with baselines that use local computation
strategies, it should not be regarded as a dynamic local computation strategy. If the
model parameters of an actor exceed the threshold region, the respective actor triggers
synchronization for all participating actors. Hence, Gradient Thresholding differs from
dynamic strategies for local computation. Furthermore, it can be combined with local
computation by performing multiple local model updates between the verifications of
whether an actor requires synchronization.

While the concept of Gradient Thresholding is proving advantageous, there are still
numerous opportunities for future improvements. Here, we list some promising avenues
for future work:

o Theoretical foundation: The threshold region and the associated distance weights
rest solely on our humble intuition. Although our intuition appears to yield consid-
erably good results, Gradient Thresholding requires a theoretical basis to enable
general validity. This includes revising the distance weights so that they reflect a
statistically plausible principle.

o Adaptation of sensitivity: Gradient Thresholding relies on the hyperparameter 6,
that controls the extent of the threshold region. The choice of this hyperparam-
eter depends on the data situation and the model. In our experiments, we set 0,
to a single, fixed value based on evaluations on validation data over various seed
values. Since the seed value also affects Dirichlet data partitioning, however, we
have utilized the same hyperparameter 6, for different data situations, which does
not yield the actual optimal choice. Thus, Gradient Thresholding would benefit
from sophisticated strategies to dynamically adjust the threshold extent during
training. Since the threshold extent is established globally and, thus, unaware of
the data itself, the adjustment is limited to the information exchanged between
actors at synchronization points. Therefore, a potential future avenue is to model
the synchronized gradients through a stochastic random walk model, allowing the

95

adaptation of the threshold extent based on the empirical variance under the re-
spective model.

Arbitrary network topology: We have considered the fully-connected network topol-
ogy for designing Gradient Thresholding. This offers the advantage that all actors
share a common threshold region. However, DFL systems often show arbitrary
network topologies, rendering Gradient Thresholding unsuitable. Therefore, fu-
ture work includes supporting arbitrary network topologies. This can be achieved
by maintaining individual threshold regions on every actor. Here, the threshold
regions are established on a personalized level, taking into account only actors that
are connected to the respective actor. This, in turn, raises challenges regarding
threshold boundaries, partial synchronization, and weakly connected actors, which
have to be addressed.

96

6. Conclusions

This thesis outlined our entire journey from DFL fundamentals to the challenge of com-
munication efficiency in DFL. To introduce the field of DFL and define the overall setting,
we started by explaining the general paradigm, identifying key research challenges, and
discussing popular application scenarios. The multitude of methods found to address
different challenges reveals the difficulty in comparing the methods with each other. To
facilitate their experimental evaluation within a comparable, common infrastructure, we
implemented a modular DFL framework, called MoDeFL. Modules represent the com-
ponents of a DFL system and are completely configurable in their strategy. Our insight
that modules can be strictly separated from each other, together with the straightfor-
ward expandability of the module implementations, promotes the use of MoDeFL in
research on novel DFL methods. The integration of various communication-efficient
techniques and the support of communication-relevant metrics in MoDeFL sparked our
interest in the challenge of communication efficiency. Therefore, we surveyed the recent
literature on DFL with a particular focus on communication efficiency. Besides estab-
lishing a taxonomy for individual strategies and examining the involved communication
cost, we identified under-researched directions regarding individual strategies and their
combinations. We found dynamic synchronization strategies among these directions,
which led us to designing a novel synchronization rule, called Gradient Thresholding.
Recognizing that synchronization between actors is the source of communication cost,
we try to optimize the trade-off between the number of synchronizations and the per-
formance. Gradient Thresholding therefore speculatively determines a region in the
parameter space in which actors are allowed to update their model parameters with-
out synchronizing with each other. This region gives actors enough leeway to omit
synchronizations by training multiple consecutive epochs, while the restrictions on the
trainable parameter space prevent actors from diverging. In addition to explaining the
methodology and providing the algorithm, we further illustrate the concept of Gradient
Thresholding in an empirical toy example. The results of our experiments demonstrate
the superiority of Gradient Thresholding over baseline experiments in optimizing the
trade-off between loss and the number of synchronizations. Furthermore, the results
indicate that the careful selection of synchronization points based on gradient properties
offers great advantages. Yet, Gradient Thresholding leaves numerous avenues for future
research, including exploring its efficacy in other problem settings and improving the
adaptation mechanisms to further reinforce its concept and attain optimal convergence
performance with minimal communication.

97

Bibliography

[1] H.B.McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-
efficient learning of deep networks from decentralized data,” in International Con-
ference on Artificial Intelligence and Statistics, 2016. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:14955348.

[2] D. Weissteiner, L. Demelius, and A. Triigler, “Communication efficiency in de-
centralized federated learning: A survey,” Artificial Intelligence Review, under
review.

[3] K. Bonawitz, H. Eichner, W. Grieskamp, et al., “Towards federated learning
at scale: System design,” ArXiv, vol. abs/1902.01046, 2019. [Online]. Available:
https://api.semanticscholar.org/CorpusID:59599820.

[4] T.Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning: Challenges,
methods, and future directions,” IEFE Signal Processing Magazine, vol. 37, pp. 50—
60, 2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:
201126242.

[5] P. Kairouz, H. B. McMahan, B. Avent, et al., “Advances and open problems
in federated learning,” Found. Trends Mach. Learn., vol. 14, pp. 1-210, 2019.
[Online]. Available: https://api.semanticscholar.org/CorpusID:209202606.

[6] L.Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” in Neural Information
Processing Systems, 2019. [Online]. Available: https://api.semanticscholar.
org/CorpusID:195316471.

[7] B. Hitaj, G. Ateniese, and F. Pérez-Cruz, “Deep models under the gan: Infor-
mation leakage from collaborative deep learning,” Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Commaunications Security, 2017. [Online].
Available: https://api.semanticscholar.org/CorpusID:5051282.

[8] J. Geiping, H. Bauermeister, H. Droge, and M. Moeller, “Inverting gradients -
how easy is it to break privacy in federated learning?” ArXiv, vol. abs/2003.14053,
2020. [Online]. Available: https : //api . semanticscholar . org/CorpusID :
214728347.

9] K. Wei, J. Li, M. Ding, et al., “Federated learning with differential privacy: Algo-
rithms and performance analysis,” IEEE Transactions on Information Forensics
and Security, vol. 15, pp. 3454-3469, 2019. [Online|. Available: https://api.
semanticscholar.org/CorpusID:207847853.

[10] N. M. Hijazi, M. Aloqaily, M. Guizani, B. Ouni, and F. Karray, “Secure feder-
ated learning with fully homomorphic encryption for iot communications,” IEEE
Internet of Things Journal, vol. 11, pp. 4289-4300, 2024. [Online]. Available:
https://api.semanticscholar.org/CorpusID:260674251.

98

https://api.semanticscholar.org/CorpusID:14955348
https://api.semanticscholar.org/CorpusID:14955348
https://api.semanticscholar.org/CorpusID:59599820
https://api.semanticscholar.org/CorpusID:201126242
https://api.semanticscholar.org/CorpusID:201126242
https://api.semanticscholar.org/CorpusID:209202606
https://api.semanticscholar.org/CorpusID:195316471
https://api.semanticscholar.org/CorpusID:195316471
https://api.semanticscholar.org/CorpusID:5051282
https://api.semanticscholar.org/CorpusID:214728347
https://api.semanticscholar.org/CorpusID:214728347
https://api.semanticscholar.org/CorpusID:207847853
https://api.semanticscholar.org/CorpusID:207847853
https://api.semanticscholar.org/CorpusID:260674251

[11]

[14]

[15]

[19]

[20]

[21]

22]

L. Zhang, J. Xu, P. Vijayakumar, P. K. Sharma, and U. Ghosh, “Homomor-
phic encryption-based privacy-preserving federated learning in iot-enabled health-
care system,” IEFEE Transactions on Network Science and Engineering, vol. 10,
pp. 2864-2880, 2023. [Online|. Available: https://api.semanticscholar.org/
CorpusID:250196012.

C. Chen, J. Liu, H. Tan, et al., “Trustworthy federated learning: Privacy, security,
and beyond,” ArXiv, vol. abs/2411.01583, 2024. [Online]. Available: https://
api.semanticscholar.org/CorpusID:273811542.

A.Z. Tan, H. Yu, L.-z. Cui, and Q. Yang, “Towards personalized federated learn-
ing,” IEEE Transactions on Neural Networks and Learning Systems, vol. 34,
pp. 9587-9603, 2021. [Online]. Available: https://api.semanticscholar.org/
CorpusID:232076330.

C. Xu, Y. Qu, Y. Xiang, and L. Gao, “Asynchronous federated learning on hetero-
geneous devices: A survey,” Comput. Sci. Rev., vol. 50, p. 100 595, 2021. [Online].
Available: https://api.semanticscholar.org/CorpusID:237454599.

Z. Zhao, Y. Mao, Y. Liu, et al., “Towards efficient communications in federated
learning: A contemporary survey,” ArXiv, vol. abs/2208.01200, 2022. [Online].
Available: https://api.semanticscholar.org/CorpusID:251252933.

O. Shahid, S. Pouriyeh, R. M. Parizi, Q. Z. Sheng, G. Srivastava, and L. Zhao,
“Communication efficiency in federated learning: Achievements and challenges,”
ArXiv, vol. abs/2107.10996, 2021. [Online]. Available: https://api.semanticscholar.
org/CorpusID:236318520.

O. R. A. Almanifi, C. O. Chow, M.-L. Tham, J. H. Chuah, and J. Kanesan,
“Communication and computation efficiency in federated learning: A survey,”
Internet Things, vol. 22, p. 100742, 2023. [Online]. Available: https://api .
semanticscholar.org/CorpusID:257370398.

E. Hallaji, R. Razavi-Far, M. Saif, B. Wang, and Q. Yang, “Decentralized feder-
ated learning: A survey on security and privacy,” IEEE Transactions on Big Data,
vol. 10, pp. 194-213, 2024. [Online]. Available: https://api.semanticscholar.
org/CorpusID:267335371.

M. Fang, Z. Zhang, Hairi, et al., “Byzantine-robust decentralized federated learn-
ing,” in Conference on Computer and Communications Security, 2024. [Online].
Available: https://api.semanticscholar.org/CorpusID:270559900.

A. C.-C. Yao, “Protocols for secure computations,” 23rd Annual Symposium on
Foundations of Computer Science (sfcs 1982), pp. 160164, 1982. [Online]. Avail-
able: https://api.semanticscholar.org/CorpusID:62613325.

R. Kanagavelu, Q. Wei, Z. Li, et al., “Ce-fed: Communication efficient multi-
party computation enabled federated learning,” Array, vol. 15, p. 100207, 2022.
[Online]. Available: https://api.semanticscholar.org/CorpusID:249861304.

C. Dwork, F. McSherry, K. Nissim, and A. D. Smith, “Calibrating noise to sensi-
tivity in private data analysis,” J. Priv. Confidentiality, vol. 7, pp. 17-51, 2006.
[Online]. Available: https://api.semanticscholar.org/CorpusID:2468323.

99

https://api.semanticscholar.org/CorpusID:250196012
https://api.semanticscholar.org/CorpusID:250196012
https://api.semanticscholar.org/CorpusID:273811542
https://api.semanticscholar.org/CorpusID:273811542
https://api.semanticscholar.org/CorpusID:232076330
https://api.semanticscholar.org/CorpusID:232076330
https://api.semanticscholar.org/CorpusID:237454599
https://api.semanticscholar.org/CorpusID:251252933
https://api.semanticscholar.org/CorpusID:236318520
https://api.semanticscholar.org/CorpusID:236318520
https://api.semanticscholar.org/CorpusID:257370398
https://api.semanticscholar.org/CorpusID:257370398
https://api.semanticscholar.org/CorpusID:267335371
https://api.semanticscholar.org/CorpusID:267335371
https://api.semanticscholar.org/CorpusID:270559900
https://api.semanticscholar.org/CorpusID:62613325
https://api.semanticscholar.org/CorpusID:249861304
https://api.semanticscholar.org/CorpusID:2468323

[26]

[27]

31]

[33]

C. Dwork and A. Roth, “The algorithmic foundations of differential privacy,”
Found. Trends Theor. Comput. Sci., vol. 9, pp. 211-407, 2014. [Online|. Available:
https://api.semanticscholar.org/CorpusID:207178262.

E. Cyffers and A. Bellet, “Privacy amplification by decentralization,” ArXiv,
vol. abs/2012.05326, 2020. [Online]. Available: https://api.semanticscholar.
org/CorpusID:228083932.

E. Cyffers, M. Even, A. Bellet, and L. Massouli’e, “Muffliato: Peer-to-peer privacy
amplification for decentralized optimization and averaging,” ArXiv, vol. abs/2206.05091,
2022. [Online]. Available: https : //api . semanticscholar . org/CorpusID :
249605841.

N. M. Hijazi, M. Aloqaily, and M. Guizani, “Collaborative iot learning with se-
cure peer-to-peer federated approach,” Computer Communications, 2024. [On-
line|. Available: https://api.semanticscholar.org/CorpusID:272626777.

H. Wang, L. Munoz-Gonzalez, D. Eklund, and S. Raza, “Non-iid data re-balancing
at iot edge with peer-to-peer federated learning for anomaly detection,” Proceed-
ings of the 14th ACM Conference on Security and Privacy in Wireless and Mo-
bile Networks, 2021. [Online]. Available: https://api.semanticscholar.org/
CorpusID:235628405|

M. Chen, Y. Xu, H. Xu, and L. Huang, “Enhancing decentralized federated learn-
ing for non-iid data on heterogeneous devices,” 2023 IEEE 39th International
Conference on Data Engineering (ICDE), pp. 2289-2302, 2023. [Online]. Avail-
able: https://api.semanticscholar.org/CorpusID:260172527.

C. Li, G. Li, and P. K. Varshney, “Decentralized federated learning via mutual
knowledge transfer,” IEEFE Internet of Things Journal, vol. 9, pp. 1136-1147,
2020. [Online]. Available: https : //api . semanticscholar . org/CorpusID :
229371278l

B. Soltani, V. Haghighi, Y. Zhou, Q. Z. Sheng, and L. Yao, “Dflstar: A decen-
tralized federated learning framework with self-knowledge distillation and par-
ticipant selection,” in International Conference on Information and Knowledge
Management, 2024. [Online]. Available: https://api . semanticscholar. org/
CorpusID:273497250.

I. Tyou, T. Murata, T. Fukami, Y. Takezawa, and K. Niwa, “A localized primal-
dual method for centralized /decentralized federated learning robust to data het-
erogeneity,” IEEE Transactions on Signal and Information Processing over Net-
works, vol. 10, pp. 94-107, 2024. [Online|. Available: https://api.semanticscholar.
org/CorpusID: 266577741,

C.-Y. Huang, K. Srinivas, X. Zhang, and X. Li, “Overcoming data and model
heterogeneities in decentralized federated learning via synthetic anchors,” ArXiv,
vol. abs/2405.11525, 2024. [Online]. Available: https://api.semanticscholar.
org/CorpusID:269921935.

A. Sadiev, E. Borodich, A. Beznosikov, et al., “Decentralized personalized fed-
erated learning: Lower bounds and optimal algorithm for all personalization
modes,” EURO J. Comput. Optim., vol. 10, p. 100041, 2021. [Online]. Available:
https://api.semanticscholar.org/CorpusID:246608311.

100

https://api.semanticscholar.org/CorpusID:207178262
https://api.semanticscholar.org/CorpusID:228083932
https://api.semanticscholar.org/CorpusID:228083932
https://api.semanticscholar.org/CorpusID:249605841
https://api.semanticscholar.org/CorpusID:249605841
https://api.semanticscholar.org/CorpusID:272626777
https://api.semanticscholar.org/CorpusID:235628405
https://api.semanticscholar.org/CorpusID:235628405
https://api.semanticscholar.org/CorpusID:260172527
https://api.semanticscholar.org/CorpusID:229371278
https://api.semanticscholar.org/CorpusID:229371278
https://api.semanticscholar.org/CorpusID:273497250
https://api.semanticscholar.org/CorpusID:273497250
https://api.semanticscholar.org/CorpusID:266577741
https://api.semanticscholar.org/CorpusID:266577741
https://api.semanticscholar.org/CorpusID:269921935
https://api.semanticscholar.org/CorpusID:269921935
https://api.semanticscholar.org/CorpusID:246608311

[34]

[35]

[40]

[41]

[42]

J. Beilharz, B. Pfitzner, R. Schmid, P. Geppert, B. Arnrich, and A. Polze, “Im-
plicit model specialization through dag-based decentralized federated learning,”
Proceedings of the 22nd International Middleware Conference, 2021. [Online].
Available: https://api.semanticscholar.org/CorpusID:240419693.

R. Dai, L. Shen, F. He, X. Tian, and D. Tao, “Dispfl: Towards communication-
efficient personalized federated learning via decentralized sparse training,” in In-
ternational Conference on Machine Learning, 2022. [Online]. Available: https:
//api.semanticscholar.org/CorpusID: 249240036

J. Cao, Z. Lian, W. Liu, Z. Zhu, and C. Ji, “Hadfl: Heterogeneity-aware de-
centralized federated learning framework,” 2021 58th ACM/IEEE Design Au-
tomation Conference (DAC), pp. 1-6, 2021. [Online]. Available: https://api.
semanticscholar.org/CorpusID:243918943.

J. Liu, T. Che, Y. Zhou, et al., “Aedfl: Efficient asynchronous decentralized fed-
erated learning with heterogeneous devices,” ArXiv, vol. abs/2312.10935, 2023.
[Online]. Available: https://api.semanticscholar.org/CorpusID:266359500.

Y. Liao, Y. Xu, H.-Z. Xu, M. Chen, L. Wang, and C. Qiao, “Asynchronous de-
centralized federated learning for heterogeneous devices,” IEEE/ACM Transac-
tions on Networking, vol. 32, pp. 4535-4550, 2024. [Online]. Available: https :
//api.semanticscholar.org/CorpusID:271236198.

S. Zhou, K. Xu, and G. Y. Li, “Communication-efficient decentralized federated
learning via one-bit compressive sensing,” 2024 IEEE 99th Vehicular Technology
Conference (VT C2024-Spring), pp. 1-5, 2023. [Online]. Available: https://api.
semanticscholar.org/CorpusID:261395891.

H. Ye, L. Liang, and G. Y. Li, “Decentralized federated learning with unreliable
communications,” IEEE Journal of Selected Topics in Signal Processing, vol. 16,
pp. 487-500, 2021. [Online|. Available: https://api . semanticscholar. org/
CorpusID:236924373.

Y. Liao, Y. Xu, H. Xu, L. Wang, and C. Qian, “Adaptive configuration for het-
erogeneous participants in decentralized federated learning,” IFEE INFOCOM
2023 - IEEE Conference on Computer Communications, pp. 1-10, 2022. [On-
line|. Available: https://api.semanticscholar.org/CorpusID:254246346.

S. Baghersalimi, T. Teijeiro, A. Aminifar, and D. A. Alonso, “Decentralized fed-
erated learning for epileptic seizures detection in low-power wearable systems,”
IEEE Transactions on Mobile Computing, vol. 23, pp. 6392-6407, 2024. [Online].
Available: https://api.semanticscholar.org/CorpusID:263282600.

B. C. Tedeschini, S. Savazzi, R. Stoklasa, et al., “Decentralized federated learning
for healthcare networks: A case study on tumor segmentation,” IFEFE Access,
vol. 10, pp. 8693-8708, 2022.

Z. Lian, Q. Yang, W. Wang, et al., “Deep-fel: Decentralized, efficient and privacy-
enhanced federated edge learning for healthcare cyber physical systems,” IFEFE
Transactions on Network Science and Engineering, vol. 9, pp. 3558-3569, 2022.

M. Wei, W. Yu, and D. Chen, “Accdfl: Accelerated decentralized federated learn-
ing for healthcare iot networks,” IEEFE Internet of Things Journal, vol. 12, pp. 5329—
5345, 2025.

101

https://api.semanticscholar.org/CorpusID:240419693
https://api.semanticscholar.org/CorpusID:249240036
https://api.semanticscholar.org/CorpusID:249240036
https://api.semanticscholar.org/CorpusID:243918943
https://api.semanticscholar.org/CorpusID:243918943
https://api.semanticscholar.org/CorpusID:266359500
https://api.semanticscholar.org/CorpusID:271236198
https://api.semanticscholar.org/CorpusID:271236198
https://api.semanticscholar.org/CorpusID:261395891
https://api.semanticscholar.org/CorpusID:261395891
https://api.semanticscholar.org/CorpusID:236924373
https://api.semanticscholar.org/CorpusID:236924373
https://api.semanticscholar.org/CorpusID:254246346
https://api.semanticscholar.org/CorpusID:263282600

[49]

[50]

[53]

[54]

[57]

[58]

B. Li, W. Gao, J. Xie, M. Gong, L. Wang, and H. Li, “Prototype-based decen-
tralized federated learning for the heterogeneous time-varying iot systems,” IFEFE
Internet of Things Journal, vol. 11, pp. 6916-6927, 2024.

Z. Lian and C. Su, “Decentralized federated learning for internet of things anomaly
detection,” Proceedings of the 2022 ACM on Asia Conference on Computer and
Communications Security, 2022.

T. Ma, H. Wang, and C. Li, “Quantized distributed federated learning for indus-
trial internet of things,” IEEFE Internet of Things Journal, vol. 10, pp. 3027-3036,
2023.

H. Ochiai, Y. Sun, Q. Jin, N. Wongwiwatchai, and H. Esaki, “Wireless ad hoc
federated learning: A fully distributed cooperative machine learning,” ArXiv,
vol. abs/2205.11779, 2022.

P. Pinyoanuntapong, W. H. Huff, M. Lee, C. Chen, and P. Wang, “Toward scalable
and robust aiot via decentralized federated learning,” IEEE Internet of Things
Magazine, vol. 5, pp. 30-35, 2022.

W. Qiu, W. Ai, H. Chen, Q. Feng, and G. Tang, “Decentralized federated learning
for industrial iot with deep echo state networks,” IEEE Transactions on Industrial
Informatics, vol. 19, pp. 5849-5857, 2023.

M. Elmahallawy, T. Luo, and M. I. Ibrahem, “Secure and efficient federated learn-
ing in leo constellations using decentralized key generation and on-orbit model
aggregation,” GLOBECOM 2023 - 2023 IEEE Global Communications Confer-
ence, pp. 727-5732, 2023.

C. Wu, Y. Zhu, and F. Wang, “Dsfl: Decentralized satellite federated learning for
energy-aware leo constellation computing,” 2022 IEEE International Conference
on Satellite Computing (Satellite), pp. 25-30, 2022.

Z.-H. Yan and D. Li, “Convergence time optimization for decentralized federated
learning with leo satellites via number control,” IEEE Transactions on Vehicular
Technology, vol. 73, pp. 4517-4522, 2024.

M. Yang, J. Zhang, and S. Liu, “Dfedsat: Communication-efficient and robust de-

centralized federated learning for leo satellite constellations,” ArXiv, vol. abs/2407.05850,

2024.

Z. Zhai, Q. Wu, S. Yu, R. Li, F. Zhang, and X. Chen, “Fedleo: An offloading-
assisted decentralized federated learning framework for low earth orbit satellite
networks,” IEEE Transactions on Mobile Computing, vol. 23, pp. 5260-5279,
2024.

L. Barbieri, M. Brambilla, and M. Nicoli, “A compressed decentralized federated
learning frame work for enhanced environmental awareness in v2v networks,”

2024 IEEFE International Conference on Acoustics, Speech, and Signal Processing
Workshops (ICASSPW), pp. 374-378, 2024.

E. T. M. Beltran, P. M. S. Sanchez, G. Bovet, B. Stiller, G. M. Pérez, and A. H.
Celdran, “Flighter: Decentralized federated learning and situational awareness for
secure military aerial reconnaissance,” IEEE Communications Magazine, vol. 63,
pp- 136-142, 2025.

102

[62]

[63]

[68]

=N @
=

=
ML

[72]

73]

H. He, J. Du, C. Jiang, J. Wang, and J. Song, “Mobility-aware decentralized
federated learning for autonomous underwater vehicles,” GLOBECOM 2024 -
2024 IEEE Global Communications Conference, pp. 2347-2352, 2024.

D. Pan, M. A. Khoshkholghi, and T. Mahmoodi, “Decentralized federated learn-
ing methods for reducing communication cost and energy consumption in uav
networks,” in Mobile Computing, Applications, and Services, 2023.

Y. Qu, H. Dai, Z. Yan, et al., “Decentralized federated learning for uav networks:
Architecture, challenges, and opportunities,” IEEE Network, vol. 35, pp. 156162,
2021.

G. Tan, H. Yuan, H. Hu, S. Zhou, and Z. Zhang, “A framework of decentralized
federated learning with soft clustering and 1-bit compressed sensing for vehicular
networks,” IEEE Internet of Things Journal, vol. 11, pp. 23 617-23 629, 2024.

Y. Xiao, Y. Ye, S. Huang, et al., “Fully decentralized federated learning-based
on-board mission for uav swarm system,” IEEE Communications Letters, vol. 25,
pp- 3296-3300, 2021.

K. Xiong, R. Wang, S. Leng, C. Huang, and C. Yuen, “Ris-empowered topology
control for decentralized federated learning in urban air mobility,” IEEFE Internet
of Things Journal, vol. 11, pp. 40757-40770, 2024.

Martin Abadi, Ashish Agarwal, Paul Barham, et al., TensorFlow: Large-scale ma-
chine learning on heterogeneous systems, Software available from tensorflow.org,
2015. [Online|. Available: https://www.tensorflow.org/.

TensorFlow Datasets, a collection of ready-to-use datasets, https://www.tensorflow.

org/datasets,

M. Mahmud, J. Z. Huang, S. Salloum, T. Z. Emara, and K. Sadatdiynov, “A
survey of data partitioning and sampling methods to support big data analysis,”
Big Data Min. Anal., vol. 3, pp. 85-101, 2020. [Online]. Available: https://api.
semanticscholar.org/CorpusID:218539779.

Q. Li, Y. Diao, Q. Chen, and B. He, “Federated learning on non-iid data si-
los: An experimental study,” 2022 IEEE 38th International Conference on Data
Engineering (ICDE), pp. 965-978, 2021. [Online]. Available: https: //api .
semanticscholar.org/CorpusID:231786564.

Keras: Deep learning for humans, https://keras.io/), Accessed: 2025-08-08.
Pytorch, https://pytorch.org/, Accessed: 2025-08-10.

C. R. Harris, K. J. Millman, S. J. van der Walt, et al., “Array programming
with NumPy,” Nature, vol. 585, no. 7825, pp. 357-362, Sep. 2020. DOI: |[10.1038/
s41586-020-2649-2. [Online]. Available: https://doi.org/10.1038/s41586-
020-2649-2.

Sparse - sparse, https://sparse.pydata.org/en/stable/, Accessed: 2025-08-
11.

Pickle — python object serialization — python 3.13.6 documentation, https :
//docs.python.org/3/library/pickle.html, Accessed: 2025-08-13.

103

https://www.tensorflow.org/
https://www.tensorflow.org/datasets
https://www.tensorflow.org/datasets
https://api.semanticscholar.org/CorpusID:218539779
https://api.semanticscholar.org/CorpusID:218539779
https://api.semanticscholar.org/CorpusID:231786564
https://api.semanticscholar.org/CorpusID:231786564
https://keras.io/
https://pytorch.org/
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://sparse.pydata.org/en/stable/
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html

[75]

[80]

[83]

[86]

S. Savazzi, M. Nicoli, and V. Rampa, “Federated learning with cooperating de-

vices: A consensus approach for massive iot networks,” IEEE Internet of Things
Journal, vol. 7, pp. 4641-4654, 2019. [Online|. Available: https://api.semanticscholar.
org/CorpusID:209515403.

J. Wang, Q. Liu, H. Liang, G. Joshi, and H. V. Poor, “Tackling the objective in-
consistency problem in heterogeneous federated optimization,” ArXiv, vol. abs/2007.07481,
2020. [Online]. Available: https : //api . semanticscholar . org/ CorpusID :
220525591.

Grpc, https://grpc.io/, Accessed: 2025-04-13.
Protocol buffers documentation, https://protobuf.dev/, Accessed: 2025-04-13.

J. Konecny, H. B. McMahan, F. X. Yu, P. Richtarik, A. T. Suresh, and D. Bacon,
“Federated learning: Strategies for improving communication efficiency,” ArXiv,
vol. abs/1610.05492, 2016. [Online]. Available: https://api.semanticscholar.
org/CorpusID:14999259.

E. T. M. Beltran, M. Q. Pérez, P. M. S. S’anchez, et al., “Decentralized federated
learning: Fundamentals, state of the art, frameworks, trends, and challenges,”
IEEE Communications Surveys & Tutorials, vol. 25, pp. 2983-3013, 2022. [On-
line]. Available: https://api.semanticscholar.org/CorpusID:253523208.

J. Wu, F. Dong, H. Leung, Z. Zhu, J. Zhou, and S. Drew, “Topology-aware
federated learning in edge computing: A comprehensive survey,” ACM Com-
puting Surveys, vol. 56, pp. 1-41, 2023. [Online]. Available: https: // api .
semanticscholar.org/CorpusID:256616242.

H. Chen, H. Wang, Q. Long, D. Jin, and Y. Li, “Advancements in federated
learning: Models, methods, and privacy,” ACM Computing Surveys, 2023. [On-
line]. Available: https://api.semanticscholar.org/CorpusID:257078992.

Q. W. Khan, A. Khan, A. Rizwan, R. Ahmad, S. Khan, and D.-H. Kim, “Decen-
tralized machine learning training: A survey on synchronization, consolidation,
and topologies,” IEEE Access, vol. 11, pp. 68031-68 050, 2023. [Online]. Avail-
able: https://api.semanticscholar.org/CorpusID:259815892.

L. Yuan, L. Sun, P. S. Yu, and Z. Wang, “Decentralized federated learning: A sur-
vey and perspective,” IEEFE Internet of Things Journal, vol. 11, pp. 34 617-34 638,
2023. [Online]. Available: https : //api . semanticscholar . org/ CorpusID :
259064130.

E. Gabrielli, G. Pica, and G. Tolomei, “A survey on decentralized federated
learning,” ArXiv, vol. abs/2308.04604, 2023. [Online]. Available: https://api.
semanticscholar.org/CorpusID:260735643.

S. K. S. Thabet, B. Soltani, Y. Zhou, Q. Z. Sheng, and S. Wen, “Towards ef-
ficient decentralized federated learning: A survey,” in International Conference
on Advanced Data Mining and Applications, 2024. [Online]. Available: https :
//api.semanticscholar.org/CorpusID:275280274.

Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning,” ACM
Transactions on Intelligent Systems and Technology (TIST), vol. 10, pp. 1-19,
2019. [Online]. Available: https : //api . semanticscholar . org/ CorpusID :
219878182.

104

https://api.semanticscholar.org/CorpusID:209515403
https://api.semanticscholar.org/CorpusID:209515403
https://api.semanticscholar.org/CorpusID:220525591
https://api.semanticscholar.org/CorpusID:220525591
https://grpc.io/
https://protobuf.dev/
https://api.semanticscholar.org/CorpusID:14999259
https://api.semanticscholar.org/CorpusID:14999259
https://api.semanticscholar.org/CorpusID:253523208
https://api.semanticscholar.org/CorpusID:256616242
https://api.semanticscholar.org/CorpusID:256616242
https://api.semanticscholar.org/CorpusID:257078992
https://api.semanticscholar.org/CorpusID:259815892
https://api.semanticscholar.org/CorpusID:259064130
https://api.semanticscholar.org/CorpusID:259064130
https://api.semanticscholar.org/CorpusID:260735643
https://api.semanticscholar.org/CorpusID:260735643
https://api.semanticscholar.org/CorpusID:275280274
https://api.semanticscholar.org/CorpusID:275280274
https://api.semanticscholar.org/CorpusID:219878182
https://api.semanticscholar.org/CorpusID:219878182

[87] A. Koloskova, S. U. Stich, and M. Jaggi, “Decentralized stochastic optimiza-
tion and gossip algorithms with compressed communication,” in International
Conference on Machine Learning, 2019. [Online]. Available: https : // api .
semanticscholar.org/CorpusID:59553565.

[88] J. Wang, A. K. Sahu, G. Joshi, and S. Kar, “Matcha: A matching-based link
scheduling strategy to speed up distributed optimization,” IEEE Transactions
on Signal Processing, vol. 70, pp. 5208-5221, 2022. [Online|. Available: https:
//api.semanticscholar.org/CorpusID:253461410.

[89] Z. Tang, S. Shi, B. Li, and X. Chu, “Gossipfl: A decentralized federated learning
framework with sparsified and adaptive communication,” IEEE Transactions on
Parallel and Distributed Systems, vol. 34, pp. 909-922, 2023. [Online]. Available:
https://api.semanticscholar.org/CorpusID:255046867.

[90] H. Wang, L. Munioz-Gonzalez, M. Z. Hameed, D. Eklund, and S. Raza, “Sparsfa:
Towards robust and communication-efficient peer-to-peer federated learning,”
Comput. Secur., vol. 129, p. 103182, 2023. [Online|. Available: https://api .
semanticscholar.org/CorpusID:257566786.

[91] W. Liu, L. Chen, Y. Chen, and W. Wang, “Communication-efficient design for
quantized decentralized federated learning,” IEEE Transactions on Signal Pro-
cessing, vol. 72, pp. 1175-1188, 2023. [Online]. Available: https://api.semanticscholar.
org/CorpusID: 257532612,

[92] L. Wang, Y. Xu, H. Xu, M. Chen, and L. Huang, “Accelerating decentralized fed-
erated learning in heterogeneous edge computing,” IEEE Transactions on Mobile
Computing, vol. 22, pp. 5001-5016, 2023. [Online|. Available: https://api .
semanticscholar.org/CorpusID:249144039.

93] R. Zong, Y. Qin, F. Wu, Z. Tang, and K. Li, “Fedcs: Efficient communication
scheduling in decentralized federated learning,” Inf. Fusion, vol. 102, p. 102028,
2023. [Online]. Available: https : //api . semanticscholar . org/CorpusID :
262156336

[94] V. Gupta, A. Lugman, N. Chattopadhyay, A. Chattopadhyay, and D. T. Niyato,
“Travellingfl: Communication efficient peer-to-peer federated learning,” IEFEE
Transactions on Vehicular Technology, vol. 73, pp. 5005-5019, 2024. [Online].
Available: https://api.semanticscholar.org/CorpusID:265225957.

[95] A. Nedi¢ and A. Olshevsky, “Distributed optimization over time-varying directed
graphs,” 52nd IEEE Conference on Decision and Control, pp. 6855-6860, 2013.
[Online|. Available: https://api.semanticscholar.org/CorpusID:8361755.

[96] C. Lanza, T. Tuytelaars, M. Miozzo, E. Angelats, and P. Dini, “Joint class and
domain continual learning for decentralized federated processes,” IEEFE Access,
vol. 13, pp. 56 982-56 993, 2025. [Online]. Available: https://api.semanticscholar.
org/CorpusID:277448727.

[97] D. Gabay and B. Mercier, “A dual algorithm for the solution of nonlinear vari-
ational problems via finite element approximation,” Computers & Mathematics
With Applications, vol. 2, pp. 17-40, 1976. [Online]. Available: https://api.
semanticscholar.org/CorpusID:174707.

105

https://api.semanticscholar.org/CorpusID:59553565
https://api.semanticscholar.org/CorpusID:59553565
https://api.semanticscholar.org/CorpusID:253461410
https://api.semanticscholar.org/CorpusID:253461410
https://api.semanticscholar.org/CorpusID:255046867
https://api.semanticscholar.org/CorpusID:257566786
https://api.semanticscholar.org/CorpusID:257566786
https://api.semanticscholar.org/CorpusID:257532612
https://api.semanticscholar.org/CorpusID:257532612
https://api.semanticscholar.org/CorpusID:249144039
https://api.semanticscholar.org/CorpusID:249144039
https://api.semanticscholar.org/CorpusID:262156336
https://api.semanticscholar.org/CorpusID:262156336
https://api.semanticscholar.org/CorpusID:265225957
https://api.semanticscholar.org/CorpusID:8361755
https://api.semanticscholar.org/CorpusID:277448727
https://api.semanticscholar.org/CorpusID:277448727
https://api.semanticscholar.org/CorpusID:174707
https://api.semanticscholar.org/CorpusID:174707

[98] S. P. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed opti-
mization and statistical learning via the alternating direction method of multi-
pliers,” Found. Trends Mach. Learn., vol. 3, pp. 1-122, 2011. [Online]. Available:
https://api.semanticscholar.org/CorpusID:51789432.

[99] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, “On the linear convergence
of the admm in decentralized consensus optimization,” IEEE Transactions on
Signal Processing, vol. 62, pp. 1750-1761, 2013. [Online|. Available: https://
api.semanticscholar.org/CorpusID:5642927.

[100] W. W. Hager and H. Zhang, “Inexact alternating direction methods of multipli-
ers for separable convex optimization,” Computational Optimization and Applica-
tions, vol. 73, pp. 201-235, 2019. [Online]. Available: https://api.semanticscholar.
org/CorpusID:37330523.

[101] C. Bucila, R. Caruana, and A. Niculescu-Mizil, “Model compression,” in Know!-
edge Discovery and Data Mining, 2006. [Online]. Available: https : / / api .
semanticscholar.org/CorpusID:11253972.

[102] G. E. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” ArXiv, vol. abs/1503.02531, 2015. [Online]. Available: https://api.
semanticscholar.org/CorpusID:7200347.

[103] Y. Zhang, T. Xiang, T. M. Hospedales, and H. Lu, “Deep mutual learning,” 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4320—
4328, 2017. [Online]. Available: https://api.semanticscholar.org/CorpusID:
26071966.

[104] P. T. Boufounos and R. Baraniuk, “l-bit compressive sensing,” 2008 /2nd An-
nual Conference on Information Sciences and Systems, pp. 16-21, 2008. [Online].
Available: https://api.semanticscholar.org/CorpusID:206563812.

[105] P. V. Dantas, W. S. da Silva, L. C. Cordeiro, and C. B. Carvalho, “A com-
prehensive review of model compression techniques in machine learning,” Appl.
Intell., vol. 54, pp. 11804—11844, 2024. [Online]. Available: https : // api .
semanticscholar.org/CorpusID:272362488.

[106] B. Hasircioglu and D. Gunduz, “Communication efficient private federated learn-
ing using dithering,” ICASSP 2024 - 2024 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 7575-7579, 2023. [On-
line]. Available: https://api.semanticscholar.org/CorpusID:261822187.

[107] A. F. Aji and K. Heafield, “Sparse communication for distributed gradient de-
scent,” ArXiv, vol. abs/1704.05021, 2017. [Online|. Available: https://api .
semanticscholar.org/CorpusID:2140766.

[108] S.U. Stich, J.-B. Cordonnier, and M. Jaggi, “Sparsified sgd with memory,” ArXiv,
vol. abs/1809.07599, 2018. [Online]. Available: https://api.semanticscholar.
org/CorpusID: 52307874l

[109] Q. Li, Z. Wen, Z. Wu, and B. He, “A survey on federated learning systems: Vi-
sion, hype and reality for data privacy and protection,” IEEE Transactions on
Knowledge and Data Engineering, vol. 35, pp. 3347-3366, 2019. [Online]. Avail-
able: https://api.semanticscholar.org/CorpusID:198179889.

106

https://api.semanticscholar.org/CorpusID:51789432
https://api.semanticscholar.org/CorpusID:5642927
https://api.semanticscholar.org/CorpusID:5642927
https://api.semanticscholar.org/CorpusID:37330523
https://api.semanticscholar.org/CorpusID:37330523
https://api.semanticscholar.org/CorpusID:11253972
https://api.semanticscholar.org/CorpusID:11253972
https://api.semanticscholar.org/CorpusID:7200347
https://api.semanticscholar.org/CorpusID:7200347
https://api.semanticscholar.org/CorpusID:26071966
https://api.semanticscholar.org/CorpusID:26071966
https://api.semanticscholar.org/CorpusID:206563812
https://api.semanticscholar.org/CorpusID:272362488
https://api.semanticscholar.org/CorpusID:272362488
https://api.semanticscholar.org/CorpusID:261822187
https://api.semanticscholar.org/CorpusID:2140766
https://api.semanticscholar.org/CorpusID:2140766
https://api.semanticscholar.org/CorpusID:52307874
https://api.semanticscholar.org/CorpusID:52307874
https://api.semanticscholar.org/CorpusID:198179889

[110] S. Wang, T. Tuor, T. Salonidis, et al., “Adaptive federated learning in resource
constrained edge computing systems,” IEEE Journal on Selected Areas in Com-
munications, vol. 37, pp. 1205-1221, 2018. [Online]. Available: https://api .
semanticscholar.org/CorpusID:51921962.

[111] X. Zhang, J. Trmal, D. Povey, and S. Khudanpur, “Improving deep neural net-
work acoustic models using generalized maxout networks,” 2014 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 215—
219, 2014. [Online|. Available: https://api.semanticscholar.org/CorpusID:
1129207.

[112] T. Lin, S. U. Stich, and M. Jaggi, “Don’t use large mini-batches, use local
sgd,” ArXiv, vol. abs/1808.07217, 2018. [Online]. Available: https : //api .
semanticscholar.org/CorpusID:52071640.

[113] K. I. Tsianos, S. F. Lawlor, and M. G. Rabbat, “Communication/computation
tradeoffs in consensus-based distributed optimization,” in Neural Information
Processing Systems, 2012. [Online]. Available: https://api.semanticscholar.
org/CorpusID:5683083.

[114] M. Kamp, L. Adilova, J. Sicking, et al., “Efficient decentralized deep learning by
dynamic model averaging,” ArXiv, vol. abs/1807.03210, 2018. [Online]. Available:
https://api.semanticscholar.org/CorpusID:49655200.

[115] J. Zhang, H. Tu, Y. Ren, et al., “An adaptive synchronous parallel strategy for
distributed machine learning,” IEEE Access, vol. 6, pp. 19222-19 230, 2018. [On-
line|. Available: https://api.semanticscholar.org/CorpusID:5039234.

[116] C. Hu, J. Jiang, and Z. Wang, “Decentralized federated learning: A segmented
gossip approach,” ArXiv, vol. abs/1908.07782, 2019. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:201124492.

[117] L. Xiao and S. P. Boyd, “Fast linear iterations for distributed averaging,” 42nd
IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475),
vol. 5, 4997-5002 Vol.5, 2003. [Online]. Available: https://api.semanticscholar.
org/CorpusID:6001203.

[118] Z. Tang, S. Shi, and X. Chu, “Communication-efficient decentralized learning
with sparsification and adaptive peer selection,” 2020 IEEE 40th International
Conference on Distributed Computing Systems (ICDCS), pp. 1207-1208, 2020.
[Online]. Available: https://api.semanticscholar.org/CorpusID:211259518.

[119] F. Faghri, I. Tabrizian, I. Markov, D. Alistarh, D. M. Roy, and A. Ramezani-
Kebrya, “Adaptive gradient quantization for data-parallel sgd,” ArXiv, vol. abs/2010.12460,
2020. [Online]. Available: https : //api . semanticscholar . org/CorpusID :
225062069

[120] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “Qsgd: Communication-
efficient sgd via gradient quantization and encoding,” in Neural Information Pro-
cessing Systems, 2016. [Online]. Available: https://api.semanticscholar.org/
CorpusID:263894534.

[121] A. K. Sahu, T. Li, M. Sanjabi, M. Zaheer, A. Talwalkar, and V. Smith, “On
the convergence of federated optimization in heterogeneous networks,” ArXiv,
vol. abs/1812.06127, 2018. [Online|. Available: https://api.semanticscholar.
org/CorpusID:56321517.

107

https://api.semanticscholar.org/CorpusID:51921962
https://api.semanticscholar.org/CorpusID:51921962
https://api.semanticscholar.org/CorpusID:1129207
https://api.semanticscholar.org/CorpusID:1129207
https://api.semanticscholar.org/CorpusID:52071640
https://api.semanticscholar.org/CorpusID:52071640
https://api.semanticscholar.org/CorpusID:5683083
https://api.semanticscholar.org/CorpusID:5683083
https://api.semanticscholar.org/CorpusID:49655200
https://api.semanticscholar.org/CorpusID:5039234
https://api.semanticscholar.org/CorpusID:201124492
https://api.semanticscholar.org/CorpusID:201124492
https://api.semanticscholar.org/CorpusID:6001203
https://api.semanticscholar.org/CorpusID:6001203
https://api.semanticscholar.org/CorpusID:211259518
https://api.semanticscholar.org/CorpusID:225062069
https://api.semanticscholar.org/CorpusID:225062069
https://api.semanticscholar.org/CorpusID:263894534
https://api.semanticscholar.org/CorpusID:263894534
https://api.semanticscholar.org/CorpusID:56321517
https://api.semanticscholar.org/CorpusID:56321517

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu, “Can decentral-
ized algorithms outperform centralized algorithms? a case study for decentralized
parallel stochastic gradient descent,” in Neural Information Processing Systems,
2017. [Online]. Available: https : //api . semanticscholar . org/ CorpusID :
1467846.

J. Wang and G. Joshi, “Cooperative sgd: A unified framework for the design and
analysis of communication-efficient sgd algorithms,” ArXiv, vol. abs/1808.07576,
2018. [Online]. Available: https : //api . semanticscholar . org/CorpusID :
52078222.

T. Sun, D. Li, and B. Wang, “Decentralized federated averaging,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 45, pp. 4289-4301, 2021.
[Online]. Available: https://api.semanticscholar.org/CorpusID:233387998.

Y. Shi, L. Shen, K. Wei, et al., “Improving the model consistency of decentralized
federated learning,” ArXiv, vol. abs/2302.04083, 2023. [Online|. Available: https:
//api.semanticscholar.org/CorpusID:256662397.

A. K. Sahu, T. Li, M. Sanjabi, M. Zaheer, A. Talwalkar, and V. Smith, “Feder-
ated optimization in heterogeneous networks,” arXiv: Learning, 2018. [Online].
Available: https://api.semanticscholar.org/CorpusID:59316566.

W. Wu, L. He, W. Lin, R. Mao, C. Maple, and S. A. Jarvis, “Safa: A semi-
asynchronous protocol for fast federated learning with low overhead,” IEEE Trans-
actions on Computers, vol. 70, pp. 655-668, 2019. [Online]. Available: https :
//api.semanticscholar.org/CorpusID:203642110.

J.-G. Park, D.-J. Han, M. Choi, and J. Moon, “Sageflow: Robust federated learn-
ing against both stragglers and adversaries,” in Neural Information Process-
ing Systems, 2021. [Online]. Available: https://api . semanticscholar.org/
CorpusID:245019704.

X. Lian, W. Zhang, C. Zhang, and J. Liu, “Asynchronous decentralized parallel
stochastic gradient descent,” ArXiv, vol. abs/1710.06952, 2017. [Online|. Avail-
able: https://api.semanticscholar.org/CorpusID:22451897.

M. Chen, B. Mao, and T. Ma, “Fedsa: A staleness-aware asynchronous federated
learning algorithm with non-iid data,” Future Gener. Comput. Syst., vol. 120,
pp. 1-12, 2021. [Online]. Available: https : // api . semanticscholar . org/
CorpusID:233374925.

Y. Chen, Y. Ning, M. Slawski, and H. Rangwala, “Asynchronous online federated
learning for edge devices with non-iid data,” 2020 IEEE International Conference
on Big Data (Big Data), pp. 15-24, 2019. [Online]. Available: https://api.
semanticscholar.org/CorpusID:224896087.

J. Nguyen, K. Malik, H. Zhan, et al., “Federated learning with buffered asyn-
chronous aggregation,” ArXiv, vol. abs/2106.06639, 2021. [Online]. Available:
https://api.semanticscholar.org/CorpusID:235422293|

N. Su and B. Li, “How asynchronous can federated learning be?” 2022 IEEE/ACM
30th International Symposium on Quality of Service (IWQoS), pp. 1-11, 2022.
[Online]. Available: https://api.semanticscholar.org/CorpusID:248837811.

108

https://api.semanticscholar.org/CorpusID:1467846
https://api.semanticscholar.org/CorpusID:1467846
https://api.semanticscholar.org/CorpusID:52078222
https://api.semanticscholar.org/CorpusID:52078222
https://api.semanticscholar.org/CorpusID:233387998
https://api.semanticscholar.org/CorpusID:256662397
https://api.semanticscholar.org/CorpusID:256662397
https://api.semanticscholar.org/CorpusID:59316566
https://api.semanticscholar.org/CorpusID:203642110
https://api.semanticscholar.org/CorpusID:203642110
https://api.semanticscholar.org/CorpusID:245019704
https://api.semanticscholar.org/CorpusID:245019704
https://api.semanticscholar.org/CorpusID:22451897
https://api.semanticscholar.org/CorpusID:233374925
https://api.semanticscholar.org/CorpusID:233374925
https://api.semanticscholar.org/CorpusID:224896087
https://api.semanticscholar.org/CorpusID:224896087
https://api.semanticscholar.org/CorpusID:235422293
https://api.semanticscholar.org/CorpusID:248837811

[134]

[135]

[136]

[137]

138

[139]

[140]

[141]

[142]

[143]

[144]

[145]

M. Lin, R. Ji, Y. Wang, et al., “Hrank: Filter pruning using high-rank feature
map,” 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1526-1535, 2020. [Online|. Available: https://api.semanticscholar.
org/CorpusID:211258761.

H. Zhang, J. Liu, J. Jia, Y. Zhou, H. Dai, and D. Dou, “Fedduap: Federated
learning with dynamic update and adaptive pruning using shared data on the
server,” in International Joint Conference on Artificial Intelligence, 2022. [On-
line]. Available: https://api.semanticscholar.org/CorpusID:248377019.

S. Yu, Z. Yao, A. Gholami, Z. Dong, M. W. Mahoney, and K. Keutzer, “Hessian-
aware pruning and optimal neural implant,” 2022 IEEE/CVF Winter Conference
on Applications of Computer Vision (WACV), pp. 3665-3676, 2021. [Online].
Available: https://api.semanticscholar.org/CorpusID:231693233.

I. Hegediis, G. Danner, and M. Jelasity, “Gossip learning as a decentralized al-
ternative to federated learning,” in IFIP International Conference on Distributed
Applications and Interoperable Systems, 2019. [Online]. Available: https://api.
semanticscholar.org/CorpusID:174800884.

A. G. Roy, S. Siddiqui, S. Pdlster], N. Navab, and C. Wachinger, “Braintor-
rent: A peer-to-peer environment for decentralized federated learning,” ArXiv,
vol. abs/1905.06731, 2019. [Online]. Available: https://api.semanticscholar.
org/CorpusID: 155099936,

S. Savazzi, M. Nicoli, V. Rampa, and S. Kianoush, “Federated learning with
mutually cooperating devices: A consensus approach towards server-less model
optimization,” ICASSP 2020 - 2020 IEEFE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 3937-3941, 2020. [Online]. Available:
https://api.semanticscholar.org/CorpusID:216480499.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied
to document recognition,” Proc. IEEE, vol. 86, pp. 2278-2324, 1998. [Online].
Available: https://api.semanticscholar.org/CorpusID: 14542261,

H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: A novel image dataset for
benchmarking machine learning algorithms,” ArXiv, vol. abs/1708.07747, 2017.
[Online]. Available: https://api.semanticscholar.org/CorpusID:702279.

A. Krizhevsky, “Learning multiple layers of features from tiny images,” M.S. the-
sis, University of Toronto, 2009. [Online]. Available: https://api.semanticscholar.
org/CorpusID:18268744.

M. Assran and M. G. Rabbat, “Asynchronous gradient push,” IEEE Transactions
on Automatic Control, vol. 66, pp. 168-183, 2018. [Online|. Available: https :
//api.semanticscholar.org/CorpusID:4384739.

M. Assran, N. Loizou, N. Ballas, and M. G. Rabbat, “Stochastic gradient push for
distributed deep learning,” ArXiv, vol. abs/1811.10792, 2018. [Online]. Available:
https://api.semanticscholar.org/CorpusID:53753741.

P. Zhou, Q. Lin, D. Loghin, B. C. Ooi, Y. Wu, and H. Yu, “Communication-
efficient decentralized machine learning over heterogeneous networks,” 2021 IEEFE

37th International Conference on Data Engineering (ICDE), pp. 384-395, 2020.
[Online|. Available: https://api.semanticscholar.org/CorpusID:221655553.

109

https://api.semanticscholar.org/CorpusID:211258761
https://api.semanticscholar.org/CorpusID:211258761
https://api.semanticscholar.org/CorpusID:248377019
https://api.semanticscholar.org/CorpusID:231693233
https://api.semanticscholar.org/CorpusID:174800884
https://api.semanticscholar.org/CorpusID:174800884
https://api.semanticscholar.org/CorpusID:155099936
https://api.semanticscholar.org/CorpusID:155099936
https://api.semanticscholar.org/CorpusID:216480499
https://api.semanticscholar.org/CorpusID:14542261
https://api.semanticscholar.org/CorpusID:702279
https://api.semanticscholar.org/CorpusID:18268744
https://api.semanticscholar.org/CorpusID:18268744
https://api.semanticscholar.org/CorpusID:4384739
https://api.semanticscholar.org/CorpusID:4384739
https://api.semanticscholar.org/CorpusID:53753741
https://api.semanticscholar.org/CorpusID:221655553

[146]

[147]

[148]

[149]

[150]

[151]

[152]

153

[154]

[155]

156

[157]

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” Communications of the ACM, vol. 60, pp. 84—
90, 2012. [Online]. Available: https://api.semanticscholar.org/CorpusID:
1959087 74.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” CoRR, vol. abs/1409.1556, 2014. [Online]. Available:
https://api.semanticscholar.org/CorpusID:14124313.

G. Cohen, S. Afshar, J. C. Tapson, and A. van Schaik, “Emnist: Extending
mnist to handwritten letters,” 2017 International Joint Conference on Neural
Networks (IJCNN), pp. 2921-2926, 2017. [Online]. Available: https://api .
semanticscholar.org/CorpusID:30587588.

O. Russakovsky, J. Deng, H. Su, et al., “Imagenet large scale visual recogni-
tion challenge,” International Journal of Computer Vision, vol. 115, pp. 211-
252, 2014. [Online]. Available: https://api.semanticscholar.org/CorpusID:
2930547.

S. Sonnenburg, V. Franc, E. Yom-Tov, and M. Sebag, “Pascal large scale learn-
ing challenge,” 25th International Conference on Machine Learning (ICML2008)
Workshop. J. Mach. Learn. Res, vol. 10, pp. 1937-1953, Jan. 2008.

D. D. Lewis, Y. Yang, T. G. Rose, and F. Li, “Rcv]l: A new benchmark collection
for text categorization research,” J. Mach. Learn. Res., vol. 5, pp. 361-397, 2004.
[Online]. Available: https://api.semanticscholar.org/CorpusID: 11027141,

T. C. Aysal, M. J. Coates, and M. G. Rabbat, “Distributed average consensus
with dithered quantization,” IFEE Transactions on Signal Processing, vol. 56,
pp. 4905-4918, 2008. [Online]. Available: https://api.semanticscholar.org/
CorpusID: 1328785,

R. Carli, F. Fagnani, P. Frasca, T. Taylor, and S. Zampieri, “Average consensus
on networks with transmission noise or quantization,” 2007 European Control
Conference (ECC), pp. 1852-1857, 2007. [Online]. Available: https: //api .
semanticscholar.org/CorpusID:1200312.

H. Tang, S. Gan, C. Zhang, T. Zhang, and J. Liu, “Communication compres-
sion for decentralized training,” in Neural Information Processing Systems, 2018.
[Online]. Available: https://api.semanticscholar.org/CorpusID:52891696.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770-778, 2015. [Online]. Available: https://api.semanticscholar.
org/CorpusID:206594692.

H. Wang, M. Yurochkin, Y. Sun, D. Papailiopoulos, and Y. Khazaeni, “Federated
learning with matched averaging,” ArXiv, vol. abs/2002.06440, 2020. [Online].
Available: https://api.semanticscholar.org/CorpusID:211132598.

Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Ng, “Reading digits
in natural images with unsupervised feature learning,” in NIPS workshop on
deep learning and unsupervised feature learning, vol. 2011, 2011, p. 7. [Online].
Available: https://api.semanticscholar.org/CorpusID: 16852518,

110

https://api.semanticscholar.org/CorpusID:195908774
https://api.semanticscholar.org/CorpusID:195908774
https://api.semanticscholar.org/CorpusID:14124313
https://api.semanticscholar.org/CorpusID:30587588
https://api.semanticscholar.org/CorpusID:30587588
https://api.semanticscholar.org/CorpusID:2930547
https://api.semanticscholar.org/CorpusID:2930547
https://api.semanticscholar.org/CorpusID:11027141
https://api.semanticscholar.org/CorpusID:1328785
https://api.semanticscholar.org/CorpusID:1328785
https://api.semanticscholar.org/CorpusID:1200312
https://api.semanticscholar.org/CorpusID:1200312
https://api.semanticscholar.org/CorpusID:52891696
https://api.semanticscholar.org/CorpusID:206594692
https://api.semanticscholar.org/CorpusID:206594692
https://api.semanticscholar.org/CorpusID:211132598
https://api.semanticscholar.org/CorpusID:16852518

[158] A. Coates, A. Ng, and H. Lee, “An analysis of single-layer networks in unsu-
pervised feature learning,” in International Conference on Artificial Intelligence
and Statistics, 2011. [Online]. Available: https://api.semanticscholar.org/
CorpusID:308212.

[159] A. Bellet, A.-M. Kermarrec, and E. Lavoie, “D-cliques: Compensating for data
heterogeneity with topology in decentralized federated learning,” 2022 41st In-
ternational Symposium on Reliable Distributed Systems (SRDS), pp. 1-11, 2021.
[Online|. Available: https://api.semanticscholar.org/CorpusID:2437570009.

[160] D. Weissteiner, Gradient evolution — david weissteiner, https://ywcb00.ywch.
org/blog/2024/gradient-evolution/, Accessed: 2025-10-23.

[161] T. Chen, G. B. Giannakis, T. Sun, and W. Yin, “Lag: Lazily aggregated gradient
for communication-efficient distributed learning,” in Neural Information Process-
ing Systems, 2018. [Online]. Available: https://api.semanticscholar.org/
CorpusID:44061071.

[162] J. Zhang, H. Tu, Y. Ren, et al., “An adaptive synchronous parallel strategy for
distributed machine learning,” IEEE Access, vol. 6, pp. 19 222-19 230, 2018. [On-
line]. Available: https://api.semanticscholar.org/CorpusID:5039234.

[163] M. Kamp, L. Adilova, J. Sicking, et al., “Efficient decentralized deep learning by
dynamic model averaging,” ArXiv, vol. abs/1807.03210, 2018. [Online|. Available:
https://api.semanticscholar.org/CorpusID:49655200.

[164] M. Theologitis, G. Frangias, G. Anestis, V. Samoladas, and A. Deligiannakis,
“Communication-efficient distributed deep learning via federated dynamic av-
eraging,” in International Conference on Extending Database Technology, 2024.
[Online]. Available: https://api.semanticscholar.org/CorpusID:270199927.

[165] R. A. Fisher, Iris, UCI Machine Learning Repository, DOI: https://doi.org/10.24432/C56C76,
1936.

[166] Y. LeCun, C. Cortes, and C. Burges, “Mnist handwritten digit database,” ATT
Labs [Online]. Available: http://yann.lecun.com/exdb/mnist, vol. 2, 2010.

[167] J. Browniee, Multi-class classification tutorial with the keras deep learning library,
https : / /machinelearningmastery . com/multi - class - classification -
tutorial-keras-deep-learning-library/, Accessed: 2025-11-11.

[168] D. Roussis, Svhn classification with cnn (keras - 96% acc), https://wuw.kaggle.
com/code/dimitriosroussis/svhn-classification-with-cnn-keras-96-
accl, Accessed: 2025-11-11.

[169] P.S.Krishna, Salary_data.csv, https://gist.github.com/saikrishnapotluri/
33ace369025ec4de0dfb9f22a0c5b09f], Accessed: 2025-11-15.

111

https://api.semanticscholar.org/CorpusID:308212
https://api.semanticscholar.org/CorpusID:308212
https://api.semanticscholar.org/CorpusID:243757009
https://ywcb00.ywcb.org/blog/2024/gradient-evolution/
https://ywcb00.ywcb.org/blog/2024/gradient-evolution/
https://api.semanticscholar.org/CorpusID:44061071
https://api.semanticscholar.org/CorpusID:44061071
https://api.semanticscholar.org/CorpusID:5039234
https://api.semanticscholar.org/CorpusID:49655200
https://api.semanticscholar.org/CorpusID:270199927
https://machinelearningmastery.com/multi-class-classification-tutorial-keras-deep-learning-library/
https://machinelearningmastery.com/multi-class-classification-tutorial-keras-deep-learning-library/
https://www.kaggle.com/code/dimitriosroussis/svhn-classification-with-cnn-keras-96-acc
https://www.kaggle.com/code/dimitriosroussis/svhn-classification-with-cnn-keras-96-acc
https://www.kaggle.com/code/dimitriosroussis/svhn-classification-with-cnn-keras-96-acc
https://gist.github.com/saikrishnapotluri/33ace369025ec4de0dfb9f22a0c5b09f
https://gist.github.com/saikrishnapotluri/33ace369025ec4de0dfb9f22a0c5b09f

A. Appendix

A.1l. Learning Rate Grid Search

1.25

1.00

0.75

0.50

Categorical Crossentropy

0.25

0.00

Figure A.1.:

= ==

0.005 0.01 0.02 0.05 0.1 0.2
Learning Rate

Box plot visualizing the final validation loss for seed values 13, 14, 15, and
16 over different learning rate values (x-axis), resulting from training on
the Iris dataset in the experimental setting of Baseline 1 in Section [5.4.2
Learning rate 0.1 performs best.

112

N

Categorical Crossentropy

== |

0.01 0.02 0.05 0.1 0.2 0.5
Learning Rate

Figure A.2.: Box plot visualizing the final validation loss for seed values 13, 14, 15, and
16 over different learning rate values (x-axis), resulting from training on
the Mnist dataset in the experimental setting of Baseline 1 in Section [5.4.2
Learning rate 0.2 performs best.

N
[=}

=
o

=
(=}

=

E_%

Sparse Categorical Crossentropy

o
3

0.0
1le-06 2e-06 5e-06 1le-05 2e-05 5e-05 le-04 2e-04 5e-04 0.001

Learning Rate

Figure A.3.: Box plot visualizing the final validation loss for seed values 13, 14, 15, and 16
over different learning rate values (x-axis), resulting from training on the
SVHN dataset in the experimental setting of Baseline 1 in Section [5.4.2
Learning rate 0.0002 performs best.

113

A.2. Choice of Sensitivity Parameter

SEED 666 SEED 667 SEED 668 SEED 669
Loss Sync. | Loss Sync. | Loss Sync. | Loss Sync.

Baseline 1 | 0.4827 100 | 0.5441 100 | 0.5110 100 | 0.2893 100
Baseline 2 | 0.3913 o1 0.6352 o1 0.5380 51 0.2934 51
Baseline 3 | 0.3654 21 0.6212 21 0.5930 21 0.3458 21
Baseline 4 | 0.4108 11 0.7794 11 0.6974 11 0.4022 11
0,=1]04653 98 0.6615 95 0.5090 96 0.2901 99
0,=21] 0465 92 0.6642 28 0.5093 90 0.2066 90

GT 6,=3 02886 82 0.7854) 0.5538 78 0.4632)
0,=4103076 42 0.8461 4 0.5129 73 0.5235 4
0,=51]03059 46 0.8254 4 0.5684 61 0.5077 4

Experiment

Table A.1.: Validation loss and number of synchronizations (‘Sync.”) of experiments on
the Iris dataset for baselines and Gradient Thresholding (GT) with multiple
values for parameter ¢, over different seeds. The gray shaded row marks our
selected value for 0,.

114

Experiment SEED 666 SEED 667 SEED 668 SEED 669
Loss Sync. | Loss Sync. | Loss Sync. | Loss Sync.

Baseline 1 0.2470 20 0.2774 20 0.2265 20 0.5016 20

Baseline 2 0.3999 11 0.2893 11 0.2296 11 0.4557 11

Baseline 3 2.4647 5 0.2899 5 0.2745 5 0.5348 5

Baseline 4 2.4486 4 0.3286 4 0.2894 4 0.5919 4

9,) =1 0.3237 20 0.2681 16 0.2274 16 0.4624 17

0, =1.25|0.2491 18 0.3772 14 0.2308 13 0.4695 10

0, =15 | 2.3760 17 0.2688 5 0.2332 9 0.5544 5

8, =1.75| 0.3748 8 0.3147 4 0.2617 5 0.5346 4

GT 6,=2 0.3847 11 0.2920 4 0.2942 4 0.5816 4

0, =2.25 | 2.5542 7 0.3223 3 0.2937 4 0.5848 3

0, =25 | 24151 6 0.2991 3 0.3092 4 0.6917 3

0, =275 | 2.3923 6 0.3308 4 0.2974 4 0.7008 3

0,=3 1.8258 8 0.2741 3 0.2797 3 0.6897 3

Table A.2.: Validation loss and number of synchronizations (‘Sync.’)

of experiments

on the Mnist dataset for baselines and Gradient Thresholding (GT) with
multiple values for parameter ¢, over different seeds. The gray shaded row
marks our selected value for 6,.

Experiment SEED 666 SEED 667 SEED 668 SEED 669
Loss Sync. | Loss Sync. | Loss Sync. | Loss Sync.

Baseline 1 | 0.3995 50 0.4202 50 0.3748 50 0.4186 50
Baseline 2 | 0.4215 26 0.3932 26 0.3769 26 0.3997 26
Baseline 3 | 0.4110 11 0.3721 11 0.4341 11 0.4433 11
Baseline 4 | 0.4701 6 0.4070 6 0.4729 6 0.5275 6
0, =11 0.4046 48 0.4319 50 0.3787 48 0.4309 48

0, =2 | 0.4088 31 0.3642 16 0.3832 23 0.3972 21

GT 6,=3|0.4300 9 0.3876 7 0.4237 9 0.4537 8
0, =4 | 0.4458 8 0.3991 7 0.4190 8 0.4614 7
0,=>5 | 0.4698 7 0.4212 7 0.4209 7 0.4855 7

Table A.3.: Validation loss and number of synchronizations (‘Sync.”)

of experiments

on the SVHN dataset for baselines and Gradient Thresholding (GT) with
multiple values for parameter ¢, over different seeds. The gray shaded row
marks our selected value for 6,.

115

A.3. Baseline Comparison

0.9
)
= Experiment
c
§ —— BL1
8 0.6 -+ BL2
3 -~ BL3
.§, -~ BL4
Q S+ GT
5]
O 03

0.0
0 25 50 75 100

Synchronizations

Figure A.4.: Test loss of experiments on the Iris dataset with seed 666 over number of
synchronizations for baselines (BL) and Gradient Thresholding (GT).

.. 0.9

D' .
e Experiment
c

g —— BL1
(%2}

5 os e
= -=- BL3
2

5 - BL4
(@]

% ceo GT
@)

o
w

0.0
0 25 50 75 100

Synchronizations

Figure A.5.: Test loss of experiments on the Iris dataset with seed 667 over number of
synchronizations for baselines (BL) and Gradient Thresholding (GT).

116

2 1.0)
e Experiment
c

@ —— BL1
(%]

o -+ BL2
O

= -=- BL3
C

= - BL4
05

8 e GT
5

O

0.0
0 25 50 75 100

Synchronizations

Figure A.6.: Test loss of experiments on the Iris dataset with seed 668 over number of
synchronizations for baselines (BL) and Gradient Thresholding (GT).

1.2

209
e Experiment
o
e —— BL1
(%]
8 -+ BL2
= 06 . BL3
3]
5 -~ BL4
(@]
L e GT
S

0.3

0.0

0 25 50 75 100

Synchronizations

Figure A.7.: Test loss of experiments on the Iris dataset with seed 669 over number of
synchronizations for baselines (BL) and Gradient Thresholding (GT).

117

e _

= Experiment

@

@ —— BL1

(2]

8 -+ BL2
2

= -~ BL3

2

5 - BL4

(@]

£ e GT

<

@)

=

0 5 10 15 20
Synchronizations

Figure A.8.: Test loss of experiments on the Mnist dataset with seed 666 over number
of synchronizations for baselines (BL) and Gradient Thresholding (GT).

3
K

>
D' -
= Experiment
c
@ —— BL1
(%]
o - BL2
o
= -~ BL3
3]
5 -~ BL4
(@]
9 1 e GT
5]
o

0

0 5 10 15 20

Synchronizations

Figure A.9.: Test loss of experiments on the Mnist dataset with seed 667 over number
of synchronizations for baselines (BL) and Gradient Thresholding (GT).

118

2.0

g .
= Experiment
c

1.5
@ —— BL1
(2]
g -+ BL2
(@)
K -~ BL3
210
5 - BL4
(@]
£ e GT
<
(@)

0.5

0.0

0 5 10 15 20

Synchronizations

Figure A.10.: Test loss of experiments on the Mnist dataset with seed 668 over number
of synchronizations for baselines (BL) and Gradient Thresholding (GT).

3
>
D' -
= Experiment
c
Qo —— BL1
(%]
o - BL2
o
= -~ BL3
L
5 -~ BL4
(@]
£ ‘e GT
<1
O

0

0 5 10 15 20

Synchronizations

Figure A.11.: Test loss of experiments on the Mnist dataset with seed 669 over number
of synchronizations for baselines (BL) and Gradient Thresholding (GT).

119

n
o

=
o

1.0

Sparse Categorical Crossentropy

o
&)

0.0

——
-
—
——

10 20 30 40 50
Synchronizations

Experiment

BL1
BL2
BL3
BL4
GT

Figure A.12.: Test loss of experiments on the SVHN dataset with seed 666 over number
of synchronizations for baselines (BL) and Gradient Thresholding (GT).

[= N
o 3] o

Sparse Categorical Crossentropy
o
o

0.0

10 20 30 40 50
Synchronizations

-

—

Experiment
—— BL1

BL2
BL3
BL4
GT

Figure A.13.: Test loss of experiments on the SVHN dataset with seed 668 over number
of synchronizations for baselines (BL) and Gradient Thresholding (GT).

120

N
o

Experiment

=
o

—— BL1
-+ BL2
-=- BL3
1.0 - BL4

e GT

Sparse Categorical Crossentropy

o
3

0.0

Synchronizations

Figure A.14.: Test loss of experiments on the SVHN dataset with seed 669 over number
of synchronizations for baselines (BL) and Gradient Thresholding (GT).

121

A.4. Threshold Distance

80 .
~ .
-~
A
. \ ! Actor
-\ |
60 ; —~— 1 = 3
3 2 —— 4
C
©
it}
2
D .
5 40 Distance Type
< —— Projected Distance
<)
o — — Distance Threshold
=
Synchronization Point
0 . . I
0 5 10 15 20

Epoch

Figure A.15.: Projected distances of the individual actors in the experiment on the Mnist
dataset with a seed value of 667. The dashed line represents the corre-
sponding threshold boundary, which triggers a synchronization when ex-
ceeded. Synchronization points are indicated by dotted vertical lines.

160
Actor
120 o 1 -= 3
3 2 —— 4
C
©
3
52}
[a) Distance Type
T 80
Q
< —— Projection Distance
=)
° — — Distance Threshold
=
40 o .
Synchronization Point
0 . . I
0 5 10 15 20

Epoch
Figure A.16.: Projection distances of the individual actors with the corresponding

threshold boundary (dashed line) in the experiment on the Mnist dataset
with a seed value of 667. The visual representation matches Figure

122

Actor

1 —
o
— 3
— 4

o N o O

Distance Type

—— Projected Distance

Weighted Distance

— = Distance Threshold

i

Synchronization Point

Figure A.17.: Projected distances of the individual actors with the corresponding thresh-
old boundary (dashed line) in the experiment on the Iris dataset with a
seed value of 666. The visual representation matches Figure @

6075 Actor
— 1 — 5
— 2 — 6
ot -— 3 — 7
8
3 40+ — 4 — 8
a)
3
_*g Distance Type
'%_J —— Projection Distance
20 | — — Distance Threshold
Synchronization Point
0 1
0 25 50 75 100

Figure A.18.: Projection distances of the individual actors with the corresponding
threshold boundary (dashed line) in the experiment on the Iris dataset
with a seed value of 666. The visual representation matches Figure

123

Weighted Distance

60

40

20

Actor
-] —=— 3

- 2 —— 4
Distance Type

—— Projected Distance

— = Distance Threshold

Synchronization Point

Figure A.19.: Projected distances of the individual actors with the corresponding thresh-

Weighted Distance

200

150

100

50

old boundary (dashed line) in the experiment on the Mnist dataset with
a seed value of 666. The visual representation matches Figure @

Actor
~- 1 -8 3

- 2 —— 4
Distance Type

—— Projection Distance

— = Distance Threshold

Synchronization Point

Figure A.20.: Projection distances of the individual actors with the corresponding

threshold boundary (dashed line) in the experiment on the Mnist dataset
with a seed value of 666. The visual representation matches Figure

500 1\ . : R AR AR R AR R EE R LR
\ ! I e A Actor
200 . ! N PR

~o- 1 -m 3
2 —— 4
300
Distance Type

—— Projected Distance

— = Distance Threshold

Weighted Distance

100 Synchronization Point

Figure A.21.: Projected distances of the individual actors with the corresponding thresh-
old boundary (dashed line) in the experiment on the SVHN dataset with
a seed value of 666. The visual representation matches Figure @

Actor
~- 1 -8 3

- 2 —— 4

600 Distance Type
—— Projection Distance

— = Distance Threshold

Weighted Distance

300
Synchronization Point

Figure A.22.: Projection distances of the individual actors with the corresponding
threshold boundary (dashed line) in the experiment on the SVHN dataset
with a seed value of 666. The visual representation matches Figure

125

A.5. Variability Test

|

2

= 2 R R e

E ‘ g ..,.,.T-,.A,‘A,‘:,;‘:;:"x;:‘;‘;“

% 2 TR _ # Actors
9 ™ - 2

(@)

= —A— 4

Q

B -=— 8

(@]

Q —+ 16
©

O 1 —=— 32
Q

@

]

Q.

wn

0 10 20 30 40
Synchronizations

Figure A.23.: Test loss of experiments on the SVHN dataset with seed 14 for various
numbers of actors over the number of synchronizations.

Sparse Categorical Crossentropy

0 10 20 30 40
Synchronizations

Figure A.24.: Test loss of experiments on the SVHN dataset with seed 15 for various
numbers of actors over the number of synchronizations.

126

> 2.0

(o8

o

5 Dirichlet
A Alpha
15

@) - 0.1
3 ~- 025
S = 0.4
(@]

Q10

5] —— 0.55
)

@ - 0.7
)

]

& 05

0.0

Synchronizations

Figure A.25.: Test loss of experiments on the SVHN dataset with seed 14 for various
values for the Dirichlet partitioning parameter o over the number of syn-
chronizations.

§2.0

S Dirichlet
@ Alpha
6 1.5 —— 0.1
3 - 0.25
% —=— 0.4
210

] —— 055
o

) -=- 0.7
@

S

on 0.5

0.0

Synchronizations

Figure A.26.: Test loss of experiments on the SVHN dataset with seed 15 for various
values for the Dirichlet partitioning parameter o over the number of syn-
chronizations.

127

25

2

20

5

@ Learning
o Rate

O

= ~- 5e-05
S 1e-04
D —= 2e-04
T 1.0

o —+— 5e-04
[

o

©

o

n

o
3]

0.0

Synchronizations

Figure A.27.: Test loss of experiments on the SVHN dataset with seed 14 for various
learning rates over the number of synchronizations.

)
2
g 2
a Learning
o Rate
)
= —o— 5e-05
g le-04
@ —=— 2e-04
T 1
@] —— 5e-04
Q
&
IS
[oR
n

0

0 10 20 30 40

Synchronizations

Figure A.28.: Test loss of experiments on the SVHN dataset with seed 15 for various
learning rates over the number of synchronizations.

128

	Introduction
	Decentralized Federated Learning: Fundamentals
	Background
	Centralized Federated Learning

	Paradigm
	Challenges
	Application Scenarios

	Modular Decentralized Federated Learning Framework: System Design
	Introduction
	Abstractions
	Actor
	Initiator
	Model Update

	Data
	Data Loading
	Data Partitioning

	Model
	Model Builder Interface
	Model Interface
	Model Serialization
	Local Training

	Model Parameters and Gradient
	Representation
	Serialization
	Aggregation

	Network Communication
	Network Topology
	Inter-node Communication
	Model Update Market
	Communication Optimization

	Execution Phases
	Initialization Phase
	Training Phase
	Evaluation Phase

	Configuration
	Connectivity
	Configuration File

	Conclusions

	Communication Efficiency in Decentralized Federated Learning: A Survey
	Introduction
	Related Surveys
	Contributions and Organization

	Communication-influencing Components
	Model Aggregation
	Synchronization Method
	Network Topology

	Communication Optimization Techniques
	Compression
	Local Computation
	Partial Device Participation

	Communication Efficiency of DFL Approaches
	Collection I: Full Device Participation
	Collection II: Dynamic Number of Local Updates
	Collection III: Perfect Parameter Transmission
	Collection IV: Sparsification for Model Compression

	Discussion

	Dynamic Synchronization Rule: Gradient Thresholding
	Introduction
	Background, Challenges, and Related Work
	Challenges
	Related Work

	Methodology
	Threshold Region
	Algorithm

	Experiments
	Experimental Setup
	Baseline Comparison
	Threshold Distance
	Parameter Space Illustration
	Variability Test

	Discussion and Future Work

	Conclusions
	Bibliography
	Appendix
	Learning Rate Grid Search
	Choice of Sensitivity Parameter
	Baseline Comparison
	Threshold Distance
	Variability Test

